Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger–Poisson system in \({\mathbb {R}}^{3}\)



In this paper, we are concerned with the existence of the least energy sign-changing solutions for the following fractional Schrödinger–Poisson system:
$$\begin{aligned} \left\{ \begin{aligned}&(-\Delta )^{s} u+V(x)u+\lambda \phi (x)u=f(x, u),\quad&\text {in}\, \ {\mathbb {R}}^{3},\\&(-\Delta )^{t}\phi =u^{2},&\text {in}\,\ {\mathbb {R}}^{3}, \end{aligned} \right. \end{aligned}$$
where \(\lambda \in {\mathbb {R}}^{+}\) is a parameter, \(s, t\in (0, 1)\) and \(4s+2t>3\), \((-\Delta )^{s}\) stands for the fractional Laplacian. By constraint variational method and quantitative deformation lemma, we prove that the above problem has one least energy sign-changing solution. Moreover, for any \(\lambda >0\), we show that the energy of the least energy sign-changing solutions is strictly larger than two times the ground state energy. Finally, we consider \(\lambda \) as a parameter and study the convergence property of the least energy sign-changing solutions as \(\lambda \searrow 0\).


Fractional Schrödinger–Poisson system Sign-changing solutions Constraint variational method Quantitative deformation lemma 

Mathematics Subject Classification

35J61 58E30 



Chao Ji is supported by Shanghai Natural Science Foundation (18ZR1409100), NSFC (No. 11301181) and China Postdoctoral Science Foundation.


  1. 1.
    Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on ${\mathbb{R}}^N$. Commun. Partial Differ. Equ. 20, 1725–1741 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benci, V., Fortunato, D.: Solitary waves of nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benguria, R., Brezis, H., Lieb, E.H.: The Thoms-Fermi-von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)CrossRefzbMATHGoogle Scholar
  5. 5.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Catto, I., Lions, P.L.: Binding of atoms and stability of molecules in Hartree and Thomas-Fermi theories. Part 1: a necessary and sufficient condition for the stability of general molecular system. Commun. Partial Differ. Equ. 17, 1051–1110 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chang, X.J., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Financial Mathematics Series. Chapman Hall/CRC, Boca Raton (2004)zbMATHGoogle Scholar
  9. 9.
    Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson system with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jiang, Y.S., Zhou, H.S.: Bound states for a stationary nonlinear Schrödinger–Poisson system with sign-changing potential in ${\mathbb{R}}^{3}$. Acta Math. Sci. 29, 1095–1104 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Laskin, N.: Fractional Schrödinger equations. Phys. Rev. 66, 56–108 (2002)MathSciNetGoogle Scholar
  13. 13.
    Li, G.B., Peng, S.J., Yan, S.S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. 12, 1069–1092 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Metzler, R., Klafter, J.: The random walls guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital. 3, 5–7 (1940)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Molica Bisci, G., Rădulescu, V.: Ground state solutions of scalar field fractional for Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 2985–3008 (2015)CrossRefzbMATHGoogle Scholar
  17. 17.
    Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Cambridge University Press, Cambridge (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Pucci, P., Xia, M.Q., Zhang, B.L.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in ${\mathbb{R}}^N$. Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256–1274 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Teng, K.M.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016)CrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, Z.P., Zhou, H.S.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in ${\mathbb{R}}^{3}$. Calc. Var. Partial Differ. Equ. 52, 927–943 (2015)CrossRefzbMATHGoogle Scholar
  24. 24.
    Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang, X., Zhang, B.L., Xiang, M.Q.: Ground states for fractional Schrödinger equations involving a critical nonlinearity. Adv. Nonlinear Anal. 5, 293–314 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Zhang, X., Zhang, B.L., Repovš, D.: Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. 142, 48–68 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsEast China University of Science and TechnologyShanghaiChina

Personalised recommendations