Reducibility for a fast-driven linear Klein–Gordon equation

  • L. Franzoi
  • A. MasperoEmail author


We prove a reducibility result for a linear Klein–Gordon equation with a quasi-periodic driving on a compact interval with Dirichlet boundary conditions. No assumptions are made on the size of the driving; however, we require it to be fast oscillating. In particular, provided that the external frequency is sufficiently large and chosen from a Cantor set of large measure, the original equation is conjugated to a time-independent, diagonal one. We achieve this result in two steps. First, we perform a preliminary transformation, adapted to fast oscillating systems, which moves the original equation in a perturbative setting. Then, we show that this new equation can be put to constant coefficients by applying a KAM reducibility scheme, whose convergence requires a new type of Melnikov conditions.


Reducibility KAM theory Fast driving potential Klein–Gordon equation 

Mathematics Subject Classification

35L10 37K55 



We thank Dario Bambusi, Massimiliano Berti, Roberto Feola, Matteo Gallone and Vieri Mastropietro for many stimulating discussions. We were partially supported by Prin-2015KB9WPT and Progetto GNAMPA - INdAM 2018 “Moti stabili ed instabili in equazioni di tipo Schrödinger”.


  1. 1.
    Abanin, D., De Roeck, W., Huveneers, F.: Theory of many-body localization in periodically driven systems. Ann. Phys. 372, 1–11 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abanin, D., De Roeck, W., Ho, W., Huveneers, F.: Effective hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems. Phys. Rev. B 95, 014112 (2017)Google Scholar
  3. 3.
    Abanin, D., De Roeck, W., Ho, W., Huveneers, F.: A rigorous theory of many-body prethermalization for periodically driven and closed quantum systems. Commun. Math. Phys. 354(3), 809–827 (2017)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for \({\rm SL}(2,\mathbb{R})\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Baldi, P., Berti, M.: Forced vibrations of a nonhomogeneous string. SIAM J. Math. Anal. 40(1), 382–412 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359(1–2), 471–536 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations I. Trans. Am. Math. Soc. 370(3), 1823–1865 (2018)zbMATHGoogle Scholar
  8. 8.
    Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219(2), 465–480 (2001)zbMATHGoogle Scholar
  9. 9.
    Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Growth of Sobolev norms for abstract linear Schrödinger Equations. J. Eur. Math. Soc. (JEMS) (2019, to appear)Google Scholar
  10. 10.
    Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation. Anal. PDE 11(3), 775–799 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bambusi, D., Maspero, A.: Birkhoff coordinates for the Toda lattice in the limit of infinitely many particles with an application to FPU. J. Funct. Anal. 270(5), 1818–1887 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Berti, M., Biasco, L., Procesi, M.: KAM for reversible derivative wave equations. Arch. Ration. Mech. Anal. 212(3), 905–955 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T}^d\) with a multiplicative potential. JEMS 15(1), 229–286 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bukov, M., D’Alessio, L., Polkovnikov, A.: Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64(2), 139–226 (2015)Google Scholar
  15. 15.
    Bourgain, J.: Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential. Commun. Math. Phys. 204(1), 207–247 (1999)zbMATHGoogle Scholar
  16. 16.
    Corsi, L., Genovese, G.: Periodic driving at high frequencies of an impurity in the isotropic XY chain. Commun. Math. Phys. 354(3), 1173–1203 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Chavaudret, C.: Reducibility of quasiperiodic cocycles in linear Lie groups. Ergod. Theory Dyn. Syst. 31(3), 741–769 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211(2), 497–525 (2000)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Delort, J.-M.: Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds. Int. Math. Res. Not. IMRN 12, 2305–2328 (2010)zbMATHGoogle Scholar
  20. 20.
    Delort, J.-M.: Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential. Commun. PDE 39(1), 1–33 (2014)zbMATHGoogle Scholar
  21. 21.
    Eisert, J., Friesdorf, M., Gogolin, C.: Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015)Google Scholar
  22. 22.
    Eliasson, H.: Almost reducibility of linear quasi-periodic systems. In: Smooth Ergodic Theory and Its Applications (Seattle, WA, 1999), Volume 69 of Proceedings of Symposia in Pure Mathematics, pp. 679–705. The American Mathematical Society, Providence, RI (2001)Google Scholar
  23. 23.
    Eliasson, H.L., Kuksin, S.B.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Commun. Math. Phys. 286(1), 125–135 (2009)zbMATHGoogle Scholar
  24. 24.
    Fang, D., Han, Z., Wang, W.-M.: Bounded Sobolev norms for Klein–Gordon equations under non-resonant perturbation. J. Math. Phys. 55(12), 121503, 11 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations. J. Differ. Equ. 259(7), 3389–3447 (2015)zbMATHGoogle Scholar
  26. 26.
    Grébert, B., Paturel, E.: KAM for the Klein Gordon equation on \(\mathbb{S}^d\). Boll. Unione Mat. Ital. 9(2), 237–288 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Grébert, B., Paturel, E.: On reducibility of quantum Harmonic Oscillator on \({\mathbb{R}}^d\) with quasiperiodic in time potential, (2016). ArXiv e-prints arXiv:1603.07455
  28. 28.
    Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307(2), 383–427 (2011)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Goldman, N., Dalibard, J.: Periodically driven quantum systems: effective hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014)Google Scholar
  30. 30.
    Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D., Esslinger, T.: Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014)Google Scholar
  31. 31.
    Kapitza, P.L.: Dynamic stability of a pendulum with an oscillating point of suspension. J. Exp. Theor. Phys. 21(5), 588–597 (1951)Google Scholar
  32. 32.
    Kappeler, T., Maspero, A., Molnar, J., Topalov, P.: On the convexity of the KdV Hamiltonian. Commun. Math. Phys. 346(1), 191–236 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Kitagawa, T., Berg, E., Rudner, M., Demler, E.: Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010)Google Scholar
  34. 34.
    Krikorian, R.: Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts. Astérisque 259, vi+216 (1999)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Krikorian, R.: Global density of reducible quasi-periodic cocycles on \({\bf T}^1\times {{\rm SU}}(2)\). Ann. Math. (2) 154(2), 269–326 (2001)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen. 21(3), 22–37, 95 (1987)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Commun. Pure Appl. Math. 63(9), 1145–1172 (2010)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Maspero, A.: Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations. Math. Res. Lett. (MRL) (2019, to appear)Google Scholar
  40. 40.
    Montalto, R.: On the growth of Sobolev norms for a class of linear Schrödinger equations on the torus with superlinear dispersion. Asymptot. Anal. 108(1–2), 85–114 (2018)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Montalto, R.: A reducibility result for a class of linear wave equations on \({\mathbb{T}}^d\). Int. Math. Res. Not. (2017).
  42. 42.
    Maspero, A.: Tame majorant analyticity for the Birkhoff map of the defocusing Nonlinear Schrödinger equation on the circle. Nonlinearity 31(5), 1981–2030 (2018)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Maspero, A., Robert, D.: On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms. J. Funct. Anal. 273(2), 721–781 (2017)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Maspero, A., Procesi, M.: Long time stability of small finite gap solutions of the cubic nonlinear Schrödinger equation on \(\mathbb{T}^2\). J. Differ. Equ. 265(7), 3212–3309 (2018)zbMATHGoogle Scholar
  45. 45.
    Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71(2), 269–296 (1996)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Wang, Z., Liang, Z.: Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay. Nonlinearity 30(4), 1405–1448 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations