Advertisement

2D Navier–Stokes equation with cylindrical fractional Brownian noise

  • Benedetta FerrarioEmail author
  • Christian Olivera
Article
  • 23 Downloads

Abstract

We consider the Navier–Stokes equation on the 2D torus, with a stochastic forcing term which is a cylindrical fractional Wiener noise of Hurst parameter H. Following Albeverio and Ferrario (Ann Probab 32(2):1632–1649, 2004) and Da Prato and Debussche (J Funct Anal 196(1):180–210, 2002) which dealt with the case \(H=\frac{1}{2}\), we prove a local existence and uniqueness result when \(\frac{7}{16}< H<\frac{1}{2}\) and a global existence and uniqueness result when \(\frac{1}{2}<H<1\).

Keywords

Stochastic partial differential equation Navier–Stokes equations Cylindrical fractional Brownian motion 

Mathematics Subject Classification

60H15 35R60 60H30 76D05 

References

  1. 1.
    Albeverio, S., Cruzeiro, A.B.: Global flows with invariant (Gibbs) measures for Euler and Navier–Stokes two-dimensional fluids. Commun. Math. Phys. 129(3), 431–444 (1990)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Albeverio, S., Ribeiro de Faria, M., Høegh-Krohn, R.: Stationary measures for the periodic Euler flow in two dimensions. J. Stat. Phys. 20(6), 585–595 (1979)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Albeverio, S., Ferrario, B.: Uniqueness of solutions of the stochastic Navier–Stokes equation with invariant measure given by the enstrophy. Ann. Probab. 32(2), 1632–1649 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bergh, L., Löfström, J.: Interpolation Spaces. An introduction. Springer, Berlin (1976)CrossRefGoogle Scholar
  5. 5.
    Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications, Probability and Its Applications (New York). Springer, London (2008)zbMATHGoogle Scholar
  6. 6.
    Brzeźniak, Z.: Stochastic partial differential equations in M-type 2 Banach spaces. Potential Anal. 4(1), 1–45 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chemin J.-Y.: About Navier–Stokes system. Publication du Laboratoire d’Analyse Numérique R 96023 (1996)Google Scholar
  8. 8.
    Da Prato, G., Debussche, A.: Two-dimensional Navier–Stokes equations driven by a space–time white noise. J. Funct. Anal. 196(1), 180–210 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Debussche, A.: The 2D-Navier–Stokes Equations Perturbed by a Delta Correlated Noise, Probabilistic Methods in Fluids, 115129. World Scientific, River Edge (2003)zbMATHGoogle Scholar
  10. 10.
    Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196(2), 189–201 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duncan, T.E., Pasik-Duncan, B., Maslowski, B.: Fractional Brownian motion and stochastic equations in Hilbert spaces. Stoch. Dyn. 2(2), 225–250 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fang, L., Sundar, P., Viens, F.: Two-dimensional stochastic Navier–Stokes equations with fractional Brownian noise. Random Oper. Stoch. Equ. 21(2), 135–158 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferrario, B.: Uniqueness result for the 2D Navier–Stokes equation with additive noise. Stoch. Stoch. Rep. 75(6), 435–442 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Flandoli, F.: An introduction to 3D stochastic fluid dynamics. In: SPDE in Hydrodynamic: Recent Progress and Prospects. Lecture Notes in Mathematics, vol. 1942, pp. 51–150. Springer, Berlin (2008)Google Scholar
  15. 15.
    Giga, Y., Miyakawa, T.: Solutions in \(L_r\) of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. 89(3), 267–281 (1985)Google Scholar
  16. 16.
    Kuo, H.H.: Gaussian measures in Banach spaces. In: Lecture Notes in Mathematics, vol. 463. Springer, Berlin (1975)Google Scholar
  17. 17.
    Kuksin, S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence, vol. 194 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  18. 18.
    Maslowski, B., van Neerven, J.: Equivalence of laws and null controllability for SPDEs driven by a fractional Brownian motion. Nonlinear Differ. Equ. Appl. 20, 1473–1498 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pasik-Duncan, B., Duncan, T.E., Maslowski, B.: Linear stochastic equations in a Hilbert space with a fractional Brownian motion. In: Yan, H., Yin, G., Zhang, Q. (eds.) Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, International Series in Operations Research & Management Science, vol. 94, pp. 201–221. Springer, New York (2006)CrossRefGoogle Scholar
  20. 20.
    Temam, R.: Navier-Stokes Equations., Theory and Numerical Analysis, Studies in Mathematics and Its Applications, vol. 2. North-Holland, Amsterdam (1977)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica “F. Casorati”Università di PaviaPaviaItaly
  2. 2.Departamento de MatemáticaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations