Advertisement

Dynamics of the nonlinear Klein–Gordon equation in the nonrelativistic limit

  • S. PasqualiEmail author
Article
  • 93 Downloads

Abstract

We study the nonlinear Klein–Gordon (NLKG) equation on a manifold M in the nonrelativistic limit, namely as the speed of light c tends to infinity. In particular, we consider a higher-order normalized approximation of NLKG (which corresponds to the NLS at order \(r=1\)) and prove that when M is a smooth compact manifold or \(\mathbb {R}^d\), the solution of the approximating equation approximates the solution of the NLKG locally uniformly in time. When \(M=\mathbb {R}^d\), \(d \ge 2\), we also prove that for \(r \ge 2\) small radiation solutions of the order-r normalized equation approximate solutions of the nonlinear NLKG up to times of order \(\mathscr {O}(c^{2(r-1)})\). We also prove a global existence result uniform with respect to c for the NLKG equation on \(\mathbb {R}^3\) with cubic nonlinearity for small initial data and Strichartz estimates for the Klein–Gordon equation with potential on \(\mathbb {R}^3\).

Keywords

Nonrelativistic limit Nonlinear Klein–Gordon equation Birkhoff normal form Long-time behavior 

Mathematics Subject Classification

37K55 70H08 70K45 81Q05 

Notes

Acknowledgements

The author would like to thank Professor Dario Bambusi, for introducing him to the problem and for many valuable discussions and suggestions.

References

  1. 1.
    Alazard, T., Carles, R.: Semi-classical limit of Schrödinger–Poisson equations in space dimension n \(\ge \) 3. J. Differ. Equ. 233(1), 241–275 (2007)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bambusi, D.: Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Mathematische Zeitschrift 230(2), 345–387 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bambusi, D.: Galerkin averaging method and Poincaré normal form for some quasilinear PDEs. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 4(4), 669–702 (2005)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bambusi, D., Carati, A., Ponno, A.: The nonlinear Schrödinger equation as a resonant normal form. Discrete Contin. Dyn. Syst. Ser. B 2(1), 109–128 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bambusi, D., Cuccagna, S.: On dispersion of small energy solutions of the nonlinear Klein Gordon equation with a potential. Am. J. Math. 133(5), 1421–1468 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bambusi, D., Ponno, A.: On metastability in FPU. Commun. Math. Phys. 264(2), 539–561 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime. Numerische Mathematik 120(2), 189–229 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator Fourier pseudospectral method for the Klein–Gordon–Schrödinger equations in the nonrelativistic limit regime. Numerische Mathematik 135, 833–873 (2016)zbMATHCrossRefGoogle Scholar
  9. 9.
    Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein–Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comput. 87, 1227–1254 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bechouche, P., Mauser, N.J., Selberg, S.: Nonrelativistic limit of Klein–Gordon–Maxwell to Schrödinger–Poisson. Am. J. Math. 126(1), 31–64 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bergh, J., Lofstrom, J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)zbMATHCrossRefGoogle Scholar
  12. 12.
    Bouclet, J.M.: Littlewood–Paley decompositions on manifolds with ends. Bull. Soc. Math. Fr. 138(1), 1–37 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126(3), 569–605 (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Carles, R., Lucha, W., Moulay, E.: Higher-order Schrödinger and Hartree–Fock equations. J. Math. Phys. 56(123), 122,301 (2015)zbMATHCrossRefGoogle Scholar
  15. 15.
    Carles, R., Moulay, E.: Higher order Schrödinger equations. J. Phys. A Math. Theor. 45(39), 395,304 (2012)zbMATHCrossRefGoogle Scholar
  16. 16.
    Cazenave, T., Weissler, F.B.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. Theory Methods Appl. 14(10), 807–836 (1990)zbMATHCrossRefGoogle Scholar
  17. 17.
    Cho, Y., Ozawa, T.: On the semirelativistic Hartree-type equation. SIAM J. Math. Anal. 38(4), 1060–1074 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Choi, W., Seok, J.: Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations. J. Math. Phys. 57(2), 021,510 (2016)zbMATHCrossRefGoogle Scholar
  19. 19.
    Cordero, E., Zucco, D.: Strichartz estimates for the vibrating plate equation. J. Evol. Equ. 11(4), 827–845 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Cuccagna, S.: Stabilization of solutions to nonlinear Schrödinger equations. Commun. Pure Appl. Math. 54(9), 1110–1145 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    D’Ancona, P., Fanelli, L.: Strichartz and smoothing estimates for dispersive equations with magnetic potentials. Commun. Partial Differ. Equ. 33(6), 1082–1112 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    D’Ancona, P., Pierfelice, V., Visciglia, N.: Some remarks on the Schrödinger equation with a potential in \(L^r_t\) \(L^s_x\). Mathematische Annalen 333(2), 271–290 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Faou, E., Schratz, K.: Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime. Numerische Mathematik 126(3), 441–469 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Fujiwara, M.: Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. Tohoku Math. J. First Ser. 10, 167–171 (1916)zbMATHGoogle Scholar
  25. 25.
    Goldberg, M.: Strichartz estimates for the Schrödinger equation with time-periodic \(L^{n/2}\) potentials. J. Funct. Anal. 256(3), 718–746 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Han-Kwan, D., Nguyen, T.T., Rousset, F.: Long time estimates for the Vlasov–Maxwell system in the non-relativistic limit. Commun. Math. Phys. 363(2), 389–434 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Hao, C., Hsiao, L., Wang, B.: Well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations in multi-dimensional spaces. J. Math. Anal. Appl. 328(1), 58–83 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Imaikin, V., Komech, A., Vainberg, B.: On scattering of solitons for the Klein–Gordon equation coupled to a particle. Commun. Math. Phys. 268(2), 321–367 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kenig, C.E., Ponce, G., Vega, L.: Small solutions to nonlinear Schrödinger equations. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 10(3), 255–288 (1993)zbMATHCrossRefGoogle Scholar
  31. 31.
    Kim, J., Arnold, A., Yao, X.: Global estimates of fundamental solutions for higher-order Schrödinger equations. Monatshefte für Mathematik 168(2), 253–266 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Kobayashi, M., Sugimoto, M.: The inclusion relation between Sobolev and modulation spaces. J. Funct. Anal. 260(11), 3189–3208 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Lämmerzahl, C.: The pseudodifferential operator square root of the Klein–Gordon equation. J. Math. Phys. 34(9), 3918–3932 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Lu, Y., Zhang, Z.: Partially strong transparency conditions and a singular localization method in geometric optics. Arch. Ration. Mech. Anal. 222(1), 245–283 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Machihara, S.: The nonrelativistic limit of the nonlinear Klein–Gordon equation. Funkcialaj Ekvacioj-Serio Internacia 44(2), 243–252 (2001)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein–Gordon equations. Mathematische Annalen 322(3), 603–621 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Maeda, M., Segata, Ji: Existence and stability of standing waves of fourth order nonlinear Schrödinger type equation related to vortex filament. Funkcialaj Ekvacioj 54(1), 1–14 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Masmoudi, N., Nakanishi, K.: From nonlinear Klein–Gordon equation to a system of coupled nonlinear Schrödinger equations. Mathematische Annalen 324(2), 359–389 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Masmoudi, N., Nakanishi, K.: Nonrelativistic limit from Maxwell–Klein–Gordon and Maxwell–Dirac to Poisson–Schrödinger. Int. Math. Res. Not. 2003(13), 697–734 (2003)zbMATHCrossRefGoogle Scholar
  40. 40.
    Masmoudi, N., Nakanishi, K.: Energy convergence for singular limits of Zakharov type systems. Inventiones mathematicae 172(3), 535–583 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Masmoudi, N., Nakanishi, K.: From the Klein–Gordon–Zakharov system to a singular nonlinear Schrödinger system. Annales de l’Institut Henri Poincare - Analyse Non Linéaire 27(4), 1073–1096 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    Najman, B.: The nonrelativistic limit of the nonlinear Klein–Gordon equation. Nonlinear Anal. Theory Methods Appl. 15(3), 217–228 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Nakanishi, K.: Nonrelativistic limit of scattering theory for nonlinear Klein–Gordon equations. J. Differ. Equ. 180(2), 453–470 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Nakanishi, K., et al.: Transfer of global wellposedness from nonlinear Klein–Gordon equation to nonlinear Schrödinger equation. Hokkaido Math. J. 37(4), 749–771 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Ohta, M., Todorova, G.: Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon–Zakharov system. SIAM J. Math. Anal. 38(6), 1912–1931 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Robert, D., Tamura, H.: Semi-classical estimates for resolvents and asymptotics for total scattering cross-sections. Annales de l’IHP Physique théorique 46(4), 415–442 (1987)zbMATHGoogle Scholar
  47. 47.
    Rodnianski, I., Schlag, W., Soffer, A.: Asymptotic stability of N-soliton states of NLS (2003). arXiv preprint arxiv:math/0309114
  48. 48.
    Rodnianski, I., Schlag, W., Soffer, A.: Dispersive analysis of charge transfer models. Commun. Pure Appl. Math. 58(2), 149–216 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Ruzhansky, M., Sugimoto, M., Wang, B.: Modulation spaces and nonlinear evolution equations. Prog. Math. 301, 267–283 (2012)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Ruzhansky, M., Wang, B., Zhang, H.: Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces. Journal de Mathématiques Pures et Appliquées 105(1), 31–65 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Schneider, G.: Bounds for the nonlinear Schrödinger approximation of the Fermi–Pasta–Ulam system. Appl. Anal. 89(9), 1523–1539 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Segata, J., et al.: Well-posedness for the fourth-order nonlinear Schrödinger-type equation related to the vortex filament. Differ. Integral Equ. 16(7), 841–864 (2003)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Shatah, J., Strauss, W.: Instability of nonlinear bound states. Commun. Math. Phys. 100(2), 173–190 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Soffer, A., Weinstein, M.I.: Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations. Inventiones mathematicae 136(1), 9–74 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Sucher, J.: Relativistic invariance and the square-root Klein–Gordon equation. J. Math. Phys. 4(1), 17–23 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Taylor, M.: Partial Differential Equations III. Nonlinear Equations. Applied Mathematical Sciences, vol. 117. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
  57. 57.
    Tsutsumi, M.: Nonrelativistic approximation of nonlinear Klein–Gordon equations in two space dimensions. Nonlinear Anal. Theory Methods Appl. 8(6), 637–643 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Wang, B., Han, L., Huang, C.: Global well-posedness and scattering for the derivative nonlinear Schrödinger equation with small rough data. Annales de l’Institut Henri Poincaré - Analyse Non Linéaire 26(6), 2253–2281 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232(1), 36–73 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Yajima, K.: The \(W^{k, p}\)-continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47(3), 551–581 (1995)zbMATHCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e FisicaUniversità degli Studi Roma TreRomeItaly

Personalised recommendations