Topological obstructions to continuity of Orlicz–Sobolev mappings of finite distortion

  • Paweł Goldstein
  • Piotr HajłaszEmail author


In the paper we investigate continuity of Orlicz–Sobolev mappings \(W^{1,P}(M,N)\) of finite distortion between smooth Riemannian n-manifolds, \(n\ge 2\), under the assumption that the Young function P satisfies the so-called divergence condition \(\int _1^\infty P(t)/t^{n+1}\, \hbox {d}t=\infty \). We prove that if the manifolds are oriented, N is compact, and the universal cover of N is not a rational homology sphere, then such mappings are continuous. That includes mappings with \(Df\in L^n\) and, more generally, mappings with \(Df\in L^n\log ^{-1}L\). On the other hand, if the space \(W^{1,P}\) is larger than \(W^{1,n}\) (for example if \(Df\in L^n\log ^{-1}L\)), and the universal cover of N is homeomorphic to \(\mathbb {S}^n\), \(n\ne 4\), or is diffeomorphic to \(\mathbb {S}^n\), \(n=4\), then we construct an example of a mapping in \(W^{1,P}(M,N)\) that has finite distortion and is discontinuous. This demonstrates a new global-to-local phenomenon: Both finite distortion and continuity are local properties, but a seemingly local fact that finite distortion implies continuity is a consequence of a global topological property of the target manifold N.


Orlicz–Sobolev mappings Rational homology spheres Mappings of finite distortion 

Mathematics Subject Classification

Primary 30C65 Secondary 46E35 58C07 



The authors would like to thank Armin Schikorra for a helpful discussion about fractional Sobolev spaces. Funding was provided by Narodowe Centrum Nauki (Grant No. 2012/05/E/ST1/03232) and National Science Foundation (Grant No. DMS-1800457).


  1. 1.
    Acerbi, E., Fusco, N.: A approximation lemma for \(W^{1,p}\) functions. In: Ball, J.M. (ed.) Proceedings of the Symposium on Material Instabilities and Continuum Mech, pp. 1–5. Oxford Science Publications, Oxford (1988)Google Scholar
  2. 2.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier, Amsterdam (2003)Google Scholar
  3. 3.
    Barden, D.: Simply connected five-manifolds. Ann. Math. 82, 365–385 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Besov, O.V., Il’in, V.P., Nikol’skiĭ, S.M.: Integral representations of functions and imbedding theorems. In: Taibleson, M.H., V. H. Winston & Sons (eds.) Scripta Series in Mathematics, vol. II. Halsted Press, Washington (1979)Google Scholar
  5. 5.
    Bonk, M., Heinonen, J.: Quasiregular mappings and cohomology. Acta Math. 186, 219–238 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carozza, M., Cianchi, A.: Smooth approximation of Orlicz–Sobolev maps between manifolds. Potential Anal. 45, 557–578 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gagliardo, E.: Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \(n\) variabili. Rend. Sem. Mat. Univ. Padova 27, 284–305 (1957)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Goldstein, P., Hajłasz, P.: Sobolev mappings, degree, homotopy classes and rational homology spheres. J. Geom. Anal. 22, 320–338 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goldstein, P., Hajłasz, P., Pakzad, M.R.: Finite distortion Sobolev mappings between manifolds are continuous. Int. Math. Res. Not. IMRN.
  10. 10.
    Greco, L., Iwaniec, T., Sbordone, C., Stroffolini, B.: Degree formulas for maps with nonintegrable Jacobian. Topol. Methods Nonlinear Anal. 6, 81–95 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hajłasz, P.: Change of variables formula under minimal assumptions. Colloq. Math. 64, 93–101 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hajłasz, P., Iwaniec, T., Malý, J., Onninen, J.: Weakly differentiable mappings between manifolds. Mem. Am. Math. Soc. 192(899), 2008 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hajłasz, P., Martio, O.: Traces of Sobolev functions on fractal type sets and characterization of extension domains. J. Func. Anal. 143, 221–246 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hirsch, M.W.: Differential Topology. Corrected reprint of the 1976 original. Graduate Texts in Mathematics. Springer, New York (1994)Google Scholar
  15. 15.
    Hirsch, M.W., Mazur, B.: Smoothings of Piecewise Linear Manifolds. Annals of Mathematics Studies, vol. 80. Princeton University Press, Princeton (1974)zbMATHGoogle Scholar
  16. 16.
    Iwaniec, T., Koskela, P., Onninen, J.: Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144, 507–531 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs. The Clarendon Press, New York (2001)Google Scholar
  18. 18.
    Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal. 119, 129–143 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext, 6th edn. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kervaire, M.A., Milnor, J.W.: Groups of homotopy spheres. I. Ann. Math. 77, 504–537 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kondo, K., Tanaka, M.: Approximations of Lipschitz maps via immersions and differentiable exotic sphere theorems. Nonlinear Anal. 155, 219–249 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Krasnosel’skiĭ, M.A., Rutickiĭ, J.B.: Convex Functions and Orlicz Spaces (Translated from the first Russian edition by Boron, L.F.) P. Noordhoff Ltd., Groningen (1961)Google Scholar
  23. 23.
    Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 105. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
  24. 24.
    Lewis, J.L.: On very weak solutions of certain elliptic systems. Commun. Partial Differ. Equ. 18, 1515–1537 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Milnor, J.: On manifolds homeomorphic to the \(7\)-sphere. Ann. Math. 64, 399–405 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mimura, M., Toda, H.: Topology of Lie Groups. I, II. Translated from the 1978 Japanese edition by the authors. Translations of Mathematical Monographs, vol. 91. American Mathematical Society, Providence (1991)Google Scholar
  27. 27.
    Mironescu, P., Sickel, W.: A Sobolev non embedding. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26, 291–298 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Moise, E.E.: Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. Math. 56, 96–114 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Onninen, J., Pankka, P.: Slow mappings of finite distortion. Math. Ann. 354, 685–705 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker, Inc., New York (1991)Google Scholar
  31. 31.
    Ruberman, D.: Null-homotopic embedded spheres of codimension one. In: Cecil, T.E., Chern, S.S. (eds.) Tight and taut submanifolds (Berkeley, CA, 1994), vol. 32 of Mathematical Sciences Research Institute Publications, pp. 229–232. Cambridge University Press, Cambridge (1997)Google Scholar
  32. 32.
    Saveliev, N.: Invariants for homology 3-spheres. Encyclopædia of Mathematical Sciences, 140. Low-Dimensional Topology. I. Springer, Berlin (2002)Google Scholar
  33. 33.
    Schmitt, B.J., Winkler, M.: On embeddings between \(BV\) and \(W^{s,p}\). Lehrstuhl I für Mathematik, RWTH Aachen Preprint no. 6 (2000)Google Scholar
  34. 34.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)Google Scholar
  35. 35.
    Sullivan, D.: Hyperbolic geometry and homeomorphisms. Geometric topology. In: Proceedings of Georgia topology conference, Athens, GA., 1977, pp. 543–555, Academic Press, New York (1979)Google Scholar
  36. 36.
    Triebel, H.: Theory of Function Spaces (Reprint of 1983 edition) Modern Birkhüser Classics. Birkhäuser, Basel (2010)Google Scholar
  37. 37.
    Tukia, P., Väisälä, P.J.: Lipschitz and quasiconformal approximation and extension. Ann. Acad. Sci. Fenn. Ser. A I Math. 6(1981), 303–342 (1982)Google Scholar
  38. 38.
    Vodop’janov, S .K., Gol’dšteĭn, V .M.: Quasiconformal mappings and spaces of functions with generalized first derivatives. Sibirsk. Mat. Ž. 17, 515–531, 715 (1976)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics, Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland
  2. 2.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations