Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Possibilities for Acid Mine Drainage Co-treatment with Other Waste Streams: A Review

Möglichkeiten zur gemeinsamen Behandlung saurer Grubenwässer mit anderen Abfallströmen: Ein Ausblick

Posibilidades para el co-tratamiento del drenaje ácido de minas con otros desechos líquidos: un review

酸性矿井废水与其它废物协同处理的前景: 综述

  • 17 Accesses

Abstract

The co-treatment of AMD with other common liquid wastes is a promising synergistic approach, fusing characteristics of active and passive AMD treatment for a sustainable remediation strategy. This paper discusses existing literature on AMD co-treatment approaches, focusing on factors that influence the feasibility of co-treatment, such as mixing proportions, microbiological elements, reactor design, and mixed-water chemistry. Finally, this paper highlights future possibilities, drawing attention to prospects that require exploration.

Zusammenfassung

Die gemeinsame Behandlung saurer Grubenwässer mit anderen gängigen Flüssigabfällen ist als nachhaltige Sanierungsstrategie ein vielversprechender synergetischer Ansatz zur passiven und aktiven Behandlung saurer Grubenwässer. Diese Arbeit erörtert vorhandene Literatur mit Mitbehandlungsansätzen für saure Grubenwässer mit dem Schwerpunkt auf Faktoren wie Mischungsverhältnisse, mikrobiologische Elemente, Reaktorkonstruktion und Mischwasserchemie, die die Durchführbarkeit der gemeinsamen Behandlung beeinflussen. Abschließend zeigt die Arbeit zukünftige Möglichkeiten unter Hinweis auf Chancen und Risiken die weiteren Untersuchungen erfordern auf.

Resumen

El tratamiento conjunto de la AMD con otros desechos líquidos comunes es un enfoque sinérgico prometedor, que fusiona las características del tratamiento de AMD activo y pasivo para una estrategia de remediación sostenible. Este artículo analiza la literatura existente sobre los enfoques de tratamiento conjunto de AMD, enfocándose en factores que influyen en la viabilidad del tratamiento conjunto, como las proporciones de mezcla, los elementos microbiológicos, el diseño del reactor y la química de agua mixta. Finalmente, este documento destaca las posibilidades futuras, llamando la atención sobre las perspectivas que requieren exploración.

抽象

酸性矿井废水(AMD)与其它常见液体废物的协同处理方法具有发展前景,它有望融合AMD主动与被动处理的特点而成为可持续性修复策略。讨论了现有关于AMD协同处理方法的文献,重点关注了影响协同处理可行性的因素,如混合比例、微生物种类、反应器设计和混合水化学特征。最后,突出了协同处理技术的发展前景与研究方向。

This is a preview of subscription content, log in to check access.

References

  1. Abril G, Frankignoulle M (2001) Nitrogen–alkalinity interactions in the highly polluted Scheldt basin (Belgium). Water Res 35:844–850

  2. Akcil A, Koldas S (2006) Acid Mine Drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145

  3. Al-Qodah Z (2006) Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination 196:164–176

  4. Azapagic A (2004) Developing a framework for sustainable development indicators for the mining and minerals industry. J Clean Prod 12:639–662

  5. Bekmezci OK, Ucar D, Kaksonen AH, Sahinkaya E (2011) Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. J Hazard Mater 189:670–676

  6. Buitrón G, Carvajal C (2010) Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour Technol 101:9071–9077

  7. Caravelli AH, Contreras EM, Zaritzky NE (2010) Phosphorous removal in batch systems using ferric chloride in the presence of activated sludges. J Hazard Mater 177:199–208

  8. Chang IS, Shin PK, Kim BH (2000) Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res 34:1269–1277

  9. Chang W-C, Hsu C-H, Chiang S-M, Su M-C (2007) Equilibrium and kinetics of metal biosorption by sludge from a biological nutrient removal system. Environ Technol 28:453–462

  10. Chipasa KB (2003) Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Manag 23:135–143

  11. Choi E, Rim JM (1991) Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci Technol 23:1259–1264

  12. Crane RS, Barton P, Cartmell E, Coulon F, Hillis P, Judd SJ, Santos A, Stephenson T, Lester JN (2010) Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: I Evaluation of biomass adsorption capacity. Environ Technol 31:705–723

  13. Demin OA, Dudeney AWL (2003) Nitrification in constructed wetlands treating ochreous mine water. Mine Water Environ 22:15–21

  14. Deng D, Lin L-S (2013) Two-stage combined treatment of acid mine drainage and municipal wastewater. Water Sci Technol 67:1000–1007

  15. Deng D, Weidhaas JL, Lin L-S (2016) Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage. J Hazard Mater 305:200–208

  16. García-Muñoz P, Pliego G, Zazo JA, Munoz M, de Pedro ZM, Bahamonde A, Casas JA (2017) Treatment of hospital wastewater through the CWPO-Photoassisted process catalyzed by ilmenite. J Environ Chem Eng 5:4337–4343

  17. Hamjinda NS, Chiemchaisri W, Watanabe T, Honda R, Chiemchaisri C (2018) Toxicological assessment of hospital wastewater in different treatment processes. Environ Sci Pollut Res 25:7271–7279

  18. He C, Zhang T, Vidic RD (2013) Use of abandoned mine drainage for the development of unconventional gas resources. Disruptive Sci Technol 1:169–176

  19. He C, Li M, Liu W, Barbot E, Vidic RD (2014a) Kinetics and equilibrium of barium and strontium sulfate formation in Marcellus Shale flowback water. J Environ Eng 140:B4014001

  20. He C, Wang X, Liu W, Barbot E, Vidic RD (2014b) Microfiltration in recycling of Marcellus Shale flowback water: solids removal and potential fouling of polymeric microfiltration membranes. J Memb Sci 462:88–95

  21. He C, Zhang T, Zheng X, Li Y, Vidic RD (2014c) Management of Marcellus Shale produced water in Pennsylvania: a review of current strategies and perspectives. Energy Technol 2:968–976

  22. He C, Zhang T, Vidic RD (2016) Co-treatment of abandoned mine drainage and Marcellus shale flowback water for use in hydraulic fracturing. Water Res 104:425–431

  23. Hedin RS, Nairn RW (1993) Contaminant removal capabilities of wetlands constructed to treat coal mine drainage. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. Lewis Publ, Boca Raton, pp 187–195

  24. Hickenbottom KL, Hancock NT, Hutchings NR, Appleton EW, Beaudry EG, Xu P, Cath TY (2013) Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination 312:60–66

  25. Hughes TA, Gray NF (2012) Acute and chronic toxicity of acid mine drainage to the activated sludge process. Mine Water Environ 31:40–52

  26. Hughes TA, Gray NF (2013a) Removal of metals and acidity from acid mine drainage using municipal wastewater and activated sludge. Mine Water Environ 32:170–184

  27. Hughes TA, Gray NF (2013b) Co-treatment of acid mine drainage with municipal wastewater: performance evaluation. Environ Sci Pollut Res 20:7863–7877

  28. Janssen AJH, Ruitenberg R, Buisman CJN (2001) Industrial applications of new sulphur biotechnology. Water Sci Technol 44:85–90

  29. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

  30. Johnson KL, Younger PL (2006) The co-treatment of sewage and mine waters in aerobic wetlands. Eng Geol 85:53–61

  31. Joseph JM, Shay DE (1952) Viability of Escherichia coli in acid mine waters. Am J Public Health N 42:795–800

  32. Kaksonen AH, Franzmann PD, Puhakka JA (2004) Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Biotechnol Bioeng 86:332–343

  33. Kefeni KK, Msagati TM, Mamba BB (2015) Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage. Chem Eng J 276:222–231

  34. Kerr RA (2010) Natural gas from shale bursts onto the scene. Science 328:1624–1626. https://doi.org/10.1126/science.328.5986.1624

  35. Kim M-S, Cha J, Kim D-H (2013) Fermentative biohydrogen production from solid wastes. In: Biohydrogen, Elsevier, pp 259–283

  36. Klein R, Schlömann M, Zeng Y, Wacker B, Glombitza F, Janneck E, Muhling M (2013) Impact of the hydraulic retention time on the performance of a sulfidogenic bioreactor. Adv Mat Res 825:392–395

  37. Kondash AJ, Warner NR, Lahav O, Vengosh A (2013) Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage. Environ Sci Technol 48:1334–1342

  38. Kumar RN, McCullough CD, Lund MA (2011a) How does storage affect the quality and quantity of organic carbon in sewage for use in the bioremediation of acidic mine waters? Ecol Eng 37:1205–1213

  39. Kumar RN, McCullough CD, Lund MA, Newport M (2011b) Sourcing organic materials for pit lake bioremediation in remote mining regions. Mine Water Environ 30:296–301

  40. Lee C, Fletcher TD, Sun G (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9:11–22

  41. Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25:452–463

  42. Liu Q, Zhou Y, Chen L, Zheng X (2010) Application of MBR for hospital wastewater treatment in China. Desalination 250:605–608

  43. Lovley DR, Phillips EJP (1986a) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl Environ Microbiol 52:751–757

  44. Lovley DR, Phillips EJP (1986b) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

  45. Lu X, Zhen G, Ni J, Hojo T, Kubota K, Li YY (2016) Effect of influent COD/SO42− ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor. Bioresour Technol 214:175–183

  46. McCullough CD (2008) Approaches to remediation of acid mine drainage water in pit lakes. Int J Min Reclam Env 22:105–119

  47. McCullough CD, Lund MA (2011) Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste. J Environ Manage 92:2419–2426

  48. McCullough CD, Lund MA, May JM (2006) Microcosm testing of municipal sewage and green waste for full-scale remediation of an acid coal pit lake, in semi-arid tropical Australia. In: Barnhisel RI (ed), Proc, 7th International Conf on Acid Rock Drainage, St. Louis, pp 1177–1197

  49. McCullough CD, Lund MA, May JM (2008a) Field-scale demonstration of the potential for sewage to remediate acidic mine waters. Mine Water Environ 27:31–39

  50. McCullough CD, Lund MA, May JM (2008b) Treating acidity in coal pit lakes using sewage and green waste: microcosm and field scale trials at the Collinsville Coal Project (Queensland), Citeseer

  51. Menezes J, Silva RA, Arce IS, Schneider IAH (2009) Production of a poly-ferric sulphate chemical coagulant by selective precipitation of iron from acidic coal mine drainage. Mine Water Environ 28:311

  52. Meng F, Shi B, Yang F, Zhang H (2007) Effect of hydraulic retention time on membrane fouling and biomass characteristics in submerged membrane bioreactors. Bioprocess Biosyst Eng 30:359–367

  53. Mesdaghinia AR, Naddafi K, Nabizadeh R, Saeedi R, Zamanzadeh M (2009) Wastewater characteristics and appropriate method for wastewater management in the hospitals. Iran J Public Health 38:34–40

  54. Metcalf E, Eddy M (2014) Wastewater engineering: treatment and resource recovery. Mic Graw-Hill, USA

  55. Mulopo J (2016) Pilot scale assessment of the continuous biological sulphate removal from coal acid mine effluent using grass cutting as carbon and energy sources. J Water Process Eng 11:104–109

  56. Munoz M, Garcia-Muñoz P, Pliego G, de Pedro ZM, Zazo JA, Casas JA, Rodriguez JJ (2016) Application of intensified Fenton oxidation to the treatment of hospital wastewater: kinetics, ecotoxicity and disinfection. J Environ Chem Eng 4:4107–4112

  57. Neculita C-M, Zagury GJ, Bussière B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J Environ Qual 36:1–16

  58. Oktem YA, Ince O, Sallis P, Donnelly T, Ince BK (2008) Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor. Bioresour Technol 99:1089–1096

  59. Paikaray S (2015) Arsenic geochemistry of acid mine drainage. Mine Water Environ 34:181–196

  60. Pambrun V, Marquot A, Racault Y (2008) Characterization of the toxic effects of cadmium and 3.5-dichlorophenol on nitrifying activity and mortality in biologically activated sludge systems—effect of low temperature. Environ Sci Pollut Res 15:592–599

  61. Pearson FH, Nesbitt JB (1974) Acid mine drainage as a chemical coagulant for treatment of municipal wastewater. Proc, 5th Symp Coal Mine Drainage Research, Lousville, pp 181–191

  62. Peer RAM, LaBar JA, Winfrey BK, Nair RW, Llanos Lopez FS, Strosnider WHJ (2015) Removal of less commonly addressed metals via passive cotreatment. J Environ Qual 44:704–710

  63. Rao SR, Gehr R, Riendeau M, Lu D, Finch JA (1992) Acid mine drainage as a coagulant. Miner Eng 5:1011–1020

  64. Rockhold ML, Yarwood RR, Niemet MR, Bottomley PJ, Selker JS (2002) Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv Water Resour 25:477–495

  65. Roetman ET (1932) The sterilization of sewage by acid mine water. MS Thesis, West Virginia Univ

  66. Rose PD, Boshoff GA, van Hille RP, Wallace LCM, Dunn KM, Duncan JR (1998) An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation 9:247–257

  67. Sandström Å, Mattsson E (2001) Bacterial ferrous iron oxidation of acid mine drainage as pre-treatment for subsequent metal recovery. Int J Miner Process 62:309–320

  68. Santos A, Judd S (2010) The fate of metals in wastewater treated by the activated sludge process and membrane bioreactors: a brief review. J Environ Monit 12:110–118

  69. Santos S, Machado R, Correia MJN, Carvalho JR (2004) Treatment of acid mining waters. Miner Eng 17:225–232

  70. Sivakumar D (2014) Role of low cost agro-based adsorbent to treat hospital wastewater. Pollut Res 2014g 33:573–576

  71. Smyntek PM, Chastel J, Peer RAM, Anthony E, McCloskey J, Bach E, Wagner RC, Bandstra JZ, Strosnider WHJ (2018) Assessment of sulphate and iron reduction rates during reactor start-up for passive anaerobic co-treatment of acid mine drainage and sewage. Geochem Explor Env Anal 18:76–84

  72. Strosnider WHJ, Nairn RW (2010) Effective passive treatment of high-strength acid mine drainage and raw municipal wastewater in Potosí, Bolivia using simple mutual incubations and limestone. J Geochem Explor 105:34–42

  73. Strosnider WHJ, Winfrey BK, Nairn RW (2011a) Novel passive co-treatment of acid mine drainage and municipal wastewater. J Environ Qual 40:206–213. https://doi.org/10.2134/jeq2010.0176

  74. Strosnider WHJ, Winfrey BK, Nairn RW (2011b) Biochemical oxygen demand and nutrient processing in a novel multi-stage raw municipal wastewater and acid mine drainage passive co-treatment system. Water Res 45:1079–1086. https://doi.org/10.1016/j.watres.2010.10.026

  75. Strosnider WHJ, Winfrey BK, Nairn RW (2011c) Alkalinity generation in a novel multi-stage high-strength acid mine drainage and municipal wastewater passive co-treatment system. Mine Water Environ 30:47–53

  76. Strosnider WHJ, Nairn RW, Peer RAM, Winfrey BK (2013a) Passive co-treatment of Zn-rich acid mine drainage and raw municipal wastewater. J Geochem Explor 125:110–116. https://doi.org/10.1016/j.gexplo.2012.11.015

  77. Strosnider WHJ, Winfrey BK, Peer RAM, Nairn RW (2013b) Passive co-treatment of acid mine drainage and sewage: anaerobic incubation reveals a regeneration technique and further treatment possibilities. Ecol Eng 61:268–273. https://doi.org/10.1016/j.ecoleng.2013.09.037

  78. Tsukamoto TK, Killion HA, Miller GC (2004) Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Water Res 38:1405–1418

  79. Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48

  80. Van Bodegom PM, Scholten JCM, Stams AJM (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol Ecol 49:261–268

  81. Van Hille RP, Boshoff GA, Rose PD, Duncan JR (1999) A continuous process for the biological treatment of heavy metal contaminated acid mine water. Resour Conserv Recycl 27:157–167

  82. Varela AR, André S, Nunes OC, Manaia CM (2014) Insights into the relationship between antimicrobial residues and bacterial populations in a hospital-urban wastewater treatment plant system. Water Res 54:327–336

  83. Wei X, Viadero RC Jr, Bhojappa S (2008) Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Res 42:3275–3284

  84. Winfrey BK, Strosnider WHJ, Nairn RW, Strevett KA (2010) Highly effective reduction of fecal indicator bacteria counts in an ecologically engineered municipal wastewater and acid mine drainage passive co-treatment system. Ecol Eng 36:1620–1626. https://doi.org/10.1016/j.ecoleng.2010.06.025

  85. Younger PL, Henderson R (2014) Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system. Water Res 55:74–82

  86. Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Springer Science & Business Media, Berlin

  87. Zhang M (2011) Adsorption study of Pb(II), Cu (II) and Zn (II) from simulated acid mine drainage using dairy manure compost. Chem Eng J 172:361–368

  88. Zhang T (2015) Origin and fate of radium in flowback and produced water from marcellus shale gas exploration. Univ of Pittsburgh, USA, PhD diss

  89. Zhang L, Keller J, Yuan Z (2009) Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing. Water Res 43:4123–4132

  90. Zhang T, Gregory K, Hammack RW, Vidic RD (2014) Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction. Environ Sci Technol 48:4596–4603

  91. Zheng X (2013) Optimization of treatment options to enable the use of abandoned mine drainage (AMD) for hydraulic fracturing in marcellus shale. MS Thesis, Univ of Pittsburgh, Pittsburgh

  92. Zipper CE, Skousen JG (2010) Influent water quality affects performance of passive treatment systems for acid mine drainage. Mine Water Environ 29:135–143

Download references

Acknowledgements

The first author would like to thank the support from the National Research Foundation, grant reference no: TTK180412319899.

Author information

Correspondence to Thobeka Pearl Makhathini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makhathini, T.P., Mulopo, J. & Bakare, B.F. Possibilities for Acid Mine Drainage Co-treatment with Other Waste Streams: A Review. Mine Water Environ (2020). https://doi.org/10.1007/s10230-020-00659-w

Download citation

Keywords

  • Metal removal
  • Neutralisation capacity
  • Remediation