Advertisement

Estimating the Hydraulic Conductivity of Deep Fractured Rock Strata from High-pressure Injection Tests

  • Zhen HuangEmail author
  • Shijie Li
  • Kui ZhaoEmail author
  • Yun Wu
  • Wei Zeng
  • Hongwei Xu
Technical Article
  • 27 Downloads

Abstract

Deep coal mining in the Yanzhou coalfield is threatened by a confined Ordovician limestone aquifer where water pressure exceeds 10 MPa. High-pressure injection tests are widely used to characterize the hydraulic properties of water-resisting fractured rock strata under such conditions, although estimating hydraulic conductivity remains an issue. This paper presents an approach to estimate it, using data from several high-pressure injection tests by accounting for the flow conditions. Typical PQ curves obtained from the injection tests were summarized and divided into Darcian and non-Darcian flow phases, and an equation was proposed to estimate the hydraulic conductivity of fractured rocks. The hydraulic conductivity is pressure dependent and increased by injection pressure in the non-Darcian flow phase, due to hydraulic fracturing. As one would expect, the hydraulic conductivity estimated using the new equation was much greater than that estimated using Darcy’s law.

Keywords

Water inrush Hydraulic properties Non-Darcian flow Hydraulic fracturing 

Abschätzung der hydraulischen Leitfähigkeit von tiefen Kluftgesteinen mittels Hochdruckinjektionstests

Zusammenfassung

Der Kohleabbau im Yanzhou Kohlefeld ist durch einen gespannten Kalksteingrundwasserleiter (Ordovizium) mit einem Wasserdruck von über 10 MPa gefährdet. Zur Untersuchung der hydraulischen Eigenschaften wasserbeständiger, geklüfteter Gesteinsschichten werden unter den genannten Bedingungen häufig Hochdruckinjektionstests verwendet. Dennoch bleibt die Abschätzung der hydraulischen Leitfähigkeit ein Problem. Dieser Artikel stellt einen Ansatz zur Abschätzung der hydraulischen Leitfähigkeit mit Daten aus verschiedenen Hochdruckinjektionstests vor. Typische P-Q-Kurven aus Injektionstests wurden zusammengefasst und in Phasen mit Darcy-Strömung und mit Nicht-Darcy-Strömung unterteilt. Zur Abschätzung der hydraulischen Leitfähigkeit von Kluftgesteinen wurde eine Gleichung aufgestellt. Die hydraulische Leitfähigkeit ist druckabhängig und steigt mit zunehmendem Injektionsdruck in der Phase der Nicht-Darcy-Strömung durch hydraulische Kluftbildung an. Die mit der neuen Gleichung ermittelte hydraulische Leitfähigkeit ist erwartungsgemäß höher als die Abschätzung mit Hilfe des Darcy-Gesetzes.

Estimación de la conductividad hidráulica de estratos de roca fracturada profunda a partir de pruebas de inyección a alta presión

Resumen

La minería profunda de carbón en el campo de Yanzhou está amenazada por un acuífero de piedra caliza ordovícico confinado donde la presión del agua supera los 10 MPa. Las pruebas de inyección a alta presión se utilizan ampliamente para caracterizar las propiedades hidráulicas de los estratos de roca fracturados resistentes al agua en tales condiciones, aunque la estimación de la conductividad hidráulica sigue siendo un problema. Este trabajo presenta un enfoque para estimarlo utilizando datos de varias pruebas de inyección de alta presión al considerar las condiciones de flujo. Las curvas P-Q típicas obtenidas de las pruebas de inyección se resumieron y dividieron en fases de flujo Darciano y no Darciano y se propuso una ecuación para estimar la conductividad hidráulica de las rocas fracturadas. La conductividad hidráulica depende de la presión y se incrementa por la presión de inyección en la fase de flujo no Darciano debido a la fracturación hidráulica. Como era de esperar, la conductividad hidráulica estimada utilizando la nueva ecuación fue mucho mayor que la estimada utilizando la ley de Darcy.

通过高压注入试验估算深部裂隙岩层的导水率

抽象

兖州煤田大采深煤炭开采受水压超过10MPa以上的奥陶系灰岩承压含水层威胁。目前广泛采用高压注水试验来研究阻水裂隙岩层的水力学性能,但目前阻水岩层渗透系数估算仍然是一个难题。提出了一种利用高压注入试验数据估算渗透系数的方法。依据注水试验的典型P-Q曲线,将注水试验划分为达西流和非达西流两个阶段,提出了一个计算裂隙岩体渗透系数的方程。结果发现渗透系数随水压力变化;由于水力压裂作用,渗透系数随非达西流阶段的注水压力增大而增大。因此,用新方程估算的渗透系数远大于使用达西定律的估算值。

Notes

Acknowledgements

The authors gratefully thank the editors and anonymous reviewers for their valuable and constructive comments in improving this paper. The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (41702326), the National Postdoctoral Program for Innovative Talents (BX201700113), the China Postdoctoral Science Foundation (2017M620205), the Natural Science Foundation of Jiangxi Province (20171BAB206022), the State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining & Technology (SKLGDUEK1703), and the Innovative Experts, Long-term Program of Jiangxi Province (jxsq2018106049).

References

  1. Angulo B, Morales T, Uriarte JA, Antigüedad I (2011) Hydraulic conductivity characterization of a karst recharge area using water injection tests and electrical resistivity logging. Eng Geol 117:90–96CrossRefGoogle Scholar
  2. Bai H, Ma D, Chen Z (2013) Mechanical behavior of groundwater seepage in karst collapse pillars. Eng Geol 164:101–106CrossRefGoogle Scholar
  3. Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24(10):1796–1804CrossRefGoogle Scholar
  4. Bukowski P (2011) Water hazard assessment in active shafts in Upper Silesian coal basin mines. Mine Water Environ 30:302–311CrossRefGoogle Scholar
  5. Cappa F, Guglielmi Y, Rutqvist J, Tsang CF, Thoraval A (2006) Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site, France. Int J Rock Mech Min Sci 43(7):1062–1082CrossRefGoogle Scholar
  6. Chen YF, Hu SH, Hu R, Zhou CB (2015) Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with an izbash’s law-based empirical model. Water Resour Res 51(4):2096–2118CrossRefGoogle Scholar
  7. Cornet FH, Doan ML, Fontbonne F (2003) Electrical imaging and hydraulic testing for a complete stress determination. Int J Rock Mech Min Sci 40:1225–1241CrossRefGoogle Scholar
  8. Derode B, Cappa F, Guglielmi Y, Rutqvist J (2013) Coupled seismo-hydromechanical monitoring of inelastic effects on injection-induced fracture permeability. Int J Rock Mech Min Sci 61:266–274CrossRefGoogle Scholar
  9. Ding L, Dai Z, Guo Q, Yu G (2017) Effects of in situ interactions between steam and coal on pyrolysis and gasification characteristics of pulverized coals and coal water slurry. Appl Energy 187:627–639CrossRefGoogle Scholar
  10. Fernandez G, Moon J (2010) Excavation-induced hydraulic conductivity reduction around a tunnel-part 1: guideline for estimate of ground water inflow rate. Tunn Undergr Space Technol 25:560–566CrossRefGoogle Scholar
  11. Forchheimer P (1901) Wasserbewegung durch boden. Z Ver Dtsch Ing 45:1782–1788Google Scholar
  12. Guglielmi Y, Cappa F, Avouac J, Henry P, Elsworth D (2015) Seismicity triggered by fluid injection–induced aseismic slip. Science 348:1224–1226CrossRefGoogle Scholar
  13. Hamm SY, Kim M, Cheong JY, Kim JY, Son M, Kim TW (2007) Relationship between hydraulic conductivity and fracture properties estimated from packer tests and borehole data in a fractured granite. Eng Geol 92:73–87CrossRefGoogle Scholar
  14. He J, Lin C, Li X, Zhang Y, Chen Y (2017) Initiation, propagation, closure and morphology of hydraulic fractures in sandstone cores. Fuel 208:65–70CrossRefGoogle Scholar
  15. Huang Z, Jiang Z, Zhu S, Qian Z, Cao D (2014) Characterizing the hydraulic conductivity of rock formations between deep coal and aquifers using injection tests. Int J Rock Mech Min Sci 71:12–18CrossRefGoogle Scholar
  16. Huang Z, Jiang Z, Fu J, Cao D (2015) Experimental measurement on the hydraulic conductivity of deep low-permeability rock. Arab J Geosci 8:5389–5396CrossRefGoogle Scholar
  17. Huang Z, Jiang ZQ, Zhu SY, Wu XS, Yang LN, Guan YZ (2016) Influence of structure and water pressure on the hydraulic conductivity of the rock mass around underground excavations. Eng Geol 202:74–84CrossRefGoogle Scholar
  18. Huang Z, Li X, Li S, Zhao K, Zhang R (2018) Investigation of the hydraulic properties of deep fractured rocks around underground excavations using high-pressure injection tests. Eng Geol 245:180–191CrossRefGoogle Scholar
  19. Huang Z, Li X, Li S, Zhao K, Xu H (2019) Variations in hydraulic properties of sedimentary rocks induced by fluid injection: the effect of water pressure. Pol J Environ Stud 28(2):647–655CrossRefGoogle Scholar
  20. Hvorslev MJ (1951) Time lag and soil permeability in ground water observations. Waterw. Exp Stn Bull 36, U.S. Army Corps Eng 50, Vicksburg. MississippiGoogle Scholar
  21. Izbash SV, Leleeva NM (1971) Aspects of turbulent seepage flow in a fill. Power Tech Eng 5(5):462–465Google Scholar
  22. Jiang Z, Fu S, Li S, Hu D, Feng S (2007) High pressure permeability test on hydraulic tunnel with steep obliquity faults under high pressure. Chin J Rock Mech Eng 26(11):2318–2323Google Scholar
  23. Jiang ZM, Chen SH, Feng SR, Zhang XM (2010) Study on the method for evaluating rock mass permeability coefficient. J Hydraul Eng 41(10):1228–1233Google Scholar
  24. Lee H, Ong SH (2018) Estimation of in situ stresses with hydro-fracturing tests and a statistical method. Rock Mech Rock Eng 51:779–799CrossRefGoogle Scholar
  25. Liang DX, Jiang ZQ, Guan YZ (2015) Field research: measuring water pressure resistance in a fault-induced fracture zone. Mine Water Environ 34(3):320–328CrossRefGoogle Scholar
  26. Lo HC, Chen PJ, Chou PY, Hsu SM (2014) The combined use of heat-pulse flowmeter logging and packer testing for transmissive fracture recognition. J Appl Geophys 105:248–258CrossRefGoogle Scholar
  27. Ma D, Rezania M, Yu HS, Bai HB (2017) Variations of hydraulic properties of granular sandstones during water inrush: effect of small particle migration. Eng Geol 217:61–70CrossRefGoogle Scholar
  28. Meng Z, Li G, Xie X (2012) A geological assessment method of floor water inrush risk and its application. Eng Geol 143–144:51–60CrossRefGoogle Scholar
  29. Meng R, Hu S, Chen Y, Zhou C (2014) Permeability of non-Darcian flow in fractured rock mass under high seepage pressure. Chin J Rock Mech Eng 33(9):1756–1764Google Scholar
  30. Neuman SP (2005) Trends, prospects and challenges in fractured rock hydrology. Hydrogeol J 13(1):124–147CrossRefGoogle Scholar
  31. Peng SP, Zhang JC (2007) Engineering geology for underground rocks. Springer, BerlinGoogle Scholar
  32. Quinn PM, Cherry JA, Parker BL (2011) Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock. Water Resour Res 47:W09533.  https://doi.org/10.1029/2010WR009681 CrossRefGoogle Scholar
  33. Rutqvist J, Noorishad J, Tsang C, Stephansson O (1998) Determination of fracture storativity in hard rocks using high-pressure injection testing. Water Resour Res 34(10):2551–2560CrossRefGoogle Scholar
  34. Yamada H, Nakamura F, Watanabe Y, Murakami M, Nogami T (2005) Measuring hydraulic permeability in streambed using the packer test. Hydrol Process 19(13):2507–2524CrossRefGoogle Scholar
  35. Zhang J, Shen B (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min Sci 41:629–639CrossRefGoogle Scholar
  36. Zhang Y, Shao W, Zhang M, Li H, Yin S, Xu Y (2016) Analysis 320 coal mine accidents using structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables. Accid Anal Prev 92:189–201CrossRefGoogle Scholar
  37. Zhou JQ, Hu SH, Fang S, Chen YF, Zhou CB (2015) Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int J Rock Mech Min Sci 80:202–218CrossRefGoogle Scholar
  38. Zhou CB, Zhao XJ, Chen YF, Liao Z, Liu MM (2018) Interpretation of high pressure pack tests for design of impervious barriers under high-head conditions. Eng Geol 234:112–121CrossRefGoogle Scholar
  39. Zhu YWS, Zhang T (2018) Permeability of the coal seam floor rock mass in a deep mine based on in situ water injection tests. Mine Water Environ 37:724–733CrossRefGoogle Scholar
  40. Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Resources and Environment EngineeringJiangxi University of Science and TechnologyGanzhouChina
  2. 2.State Key Laboratory for GeoMechanics and Deep Underground EngineeringXuzhouChina
  3. 3.School of Earth Sciences and EngineeringNanjing UniversityNanjingChina

Personalised recommendations