Advertisement

Thermal Infrared Imaging to Identify Surface Mines

  • P. K. Joshi
  • Anita PuniaEmail author
Technical Communication
  • 10 Downloads

Abstract

Mines show spectral resemblance with other landscape features; hence, their identification with satellite imagery can be difficult. To address this, land surface temperature (LST) derived from thermal infrared images of satellite remote sensing data was used to differentiate mines. Higher surface temperatures were observed for mined land than other classes (built-up and fallow land) in nighttime data. This indicates that the increased surface temperature of the other classes is due to solar heating while geothermal and pyrite oxidation contribute warmth at mined sites. Nighttime LST can be used to locate mines and their spatial extent despite the low spatial resolution of satellite data. It also confirms a mine’s heat island phenomenon due to geothermal energy.

Keywords

Geothermal energy Land surface temperature Remote sensing Renewable energy 

Bilder im thermischen Infrarot für die Identifizierung von Tagebauen

Zusammenfassung

Tagebaue zeigen spektrale Ähnlichkeiten mit anderen Landschaftselementen. Daher kann die Identifizierung von Tagebauen auf Satellitenbildern schwierig sein. Um dieses Problem zu lösen, wurde die Landoberflächentemperatur benutzt, abgeleitet aus Satellitenbildern im thermischen Infrarot, um Tagebaue von anderen Landschaftselementen zu unterscheiden. Für Tagebaue wurden im Vergleich zu anderen Landschaftselementen (bebaute und Brachflächen) höhere Oberflächentemperaturen in den Nachtstunden beobachtet. Das zeigt, dass der geothermische Wärmefluss und die Pyritoxidation zu erhöhten Oberflächentemperaturen für Tagebaue beitragen während für andere Landschaftselemente die Sonneneinstrahlung am Tag allein entscheidend ist. Nächtliche Landoberflächentemperaturen können daher für die Lokalisierung und die Bestimmung der räumlichen Ausdehnung von Tagebauen verwendet werden, trotz der geringen Auflösung von Satellitenaufnahmen. Außerdem wird eine Wärmeanomalie von Tagebauen aufgrund von geothermischer Energie bestätigt.

热红外成像方法识别露天矿

抽象

露天矿的光谱特征与其它景观相似,难以通过卫星图像识别。为解决该问题,利用卫星遥感数据的热红外图像获取地表温度(LST)来识别露天矿。在夜晚,已开采矿区比其它类型(建设用地和休耕地)地表温度更高。该现象表明:其它类型地表温度升高是由太阳照射引起,而已开采矿区地表温度升高是由地热和黄铁矿氧化引起。虽然卫星数据的空间分辨率低,但是夜晚地表温度(LST)能够定位已开采矿区及空间扩展。这也证实了已开采矿区热岛现象是由地热引起。

Imágenes infrarrojas térmicas para identificar minas de superficie

Resumen

Las minas muestran una semejanza espectral con otras características del paisaje por lo que su identificación con imágenes satelitales puede ser dificultosa. Para abordar esto, se utilizó la temperatura de la superficie terrestre (LST) derivada de imágenes infrarrojas térmicas de datos de sensores remotos satelitales para diferenciar las minas. Las tierras afectadas por la minería presentaron temperaturas superficiales más altas que otras zonas (tierras edificadas y en barbecho) en los datos nocturnos. Esto indica que el aumento de la temperatura de la superficie de las otras clases se debe al calentamiento solar mientras que la energía geotérmica y la oxidación de pirita contribuyen al calor en los sitios explotados por la minería. La LST nocturna se puede usar para localizar minas y su extensión espacial a pesar de la baja resolución espacial de los datos satelitales. También confirma el fenómeno de isla de calor de una mina debido a la energía geotérmica.

References

  1. Al-Habaibeh A, Athresh AP, Parker K (2018) Performance analysis of using mine water from an abandoned coal mine for heating of buildings using an open loop based single shaft GSHP system. Appl Energy 211:393–402CrossRefGoogle Scholar
  2. Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12:313–329CrossRefGoogle Scholar
  3. Banks D, Athresh A, Al-Habaibeh A, Burnside N (2019) Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom. Sustain Water Res Manag 5:29–50CrossRefGoogle Scholar
  4. Bao T, Liu Z (2019) Thermohaline stratification modeling in mine water via double-diffusive convection for geothermal energy recovery from flooded mines. Appl Energy 237:566–580CrossRefGoogle Scholar
  5. Bao T, Meldrum J, Green C, Vitton S, Liu Z, Bird K (2019) Geothermal energy recovery from deep flooded copper mines for heating. Energy Convers Manag 183:604–616CrossRefGoogle Scholar
  6. Clauser C (2006) Geothermal energy. Landolt-Bo ¨rnstein, group VIII: advanced materials and technologies. In: Heinloth K (ed) Renewable energies, vol 3(C). Springer, Heidelberg, pp 493–604CrossRefGoogle Scholar
  7. Deng Y, Wang S, Bai X, Tian Y, Wu L, Xiao J, Chen F, Qian Q (2018) Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci Rep 8:641CrossRefGoogle Scholar
  8. Hall A, Scott JA, Shang H (2011) Geothermal energy recovery from underground mines. Renew Sustain Energy Rev 15:916–924CrossRefGoogle Scholar
  9. Harries JR, Ritchie AIM (1981) The use of temperature profiles to estimate the pyritic oxidation rate in a waste rock dump from an opencut mine. Water Air Soil Pollut 15:405–423CrossRefGoogle Scholar
  10. Hudson-Edwards K (2016) Tackling mine wastes. Science 352(6283):288–290CrossRefGoogle Scholar
  11. Li S, Chen X (2014) A new bare-soil index for rapid mapping developing areas using LANDSAT 8 data. Int Arc Photogramm Remote Sens Spat Inf Sci 40(4):139–144CrossRefGoogle Scholar
  12. Loredo C, Ordóñez A, Garcia-Ordiales E, Álvarez R, Roqueñi N, Cienfuegos P, Peña A, Burnside NM (2017) Hydrochemical characterization of a mine water geothermal energy resource in NW Spain. Sci Total Environ 576:59–69CrossRefGoogle Scholar
  13. Lund JW (2007) Characteristics, development and utilization of geothermal resources. Geo Heat Cent Q Bull 28:1–9Google Scholar
  14. Malolepszy Z (2003) Low temperature, man-made geothermal reservoirs in abandoned workings of underground mines. In: Proc, 28th Workshop on Geothermal Reservoir Engineering, Stanford, California, pp 259–265Google Scholar
  15. McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432CrossRefGoogle Scholar
  16. Popiel CO, Wojtkowiak J, Biernacka B (2001) Measurements of temperature distribution in ground. Exp Therm Fluid Sci 25:301–309CrossRefGoogle Scholar
  17. Rathore CS, Wright R (1993) Monitoring environmental impacts of surface coal mining. Int J Remote Sens 14(6):1021–1042CrossRefGoogle Scholar
  18. Reichart G, Vaute L, Collon-Drouaillet P, Buès MA (2011) Modelling heat and salinity related convective processes in deep mining flooded wells. In: Proc, 11th International Mine Water Assoc Congress, IMWA, Aachen, Germany, pp 183–187Google Scholar
  19. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Proc 3rd ERTS Symp NASA 351I:309–317Google Scholar
  20. Verhoeven R, Willems E, Harcouët-Menou V, De Boever E, Hiddes L, Veld PO, Demollin E (2014) Minewater 2.0 project in Heerlen, The Netherlands: transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling. Energy Procedia 46:58–67CrossRefGoogle Scholar
  21. Watzlaf GR, Ackman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ 25:1–15CrossRefGoogle Scholar
  22. Yang G, Pu R, Zhao C, Huang W, Wang J (2011) Estimation of subpixel land surface temperature using an endmember index based technique: a case examination on ASTER and MODIS temperature products over a heterogeneous area. Remote Sens Environ 115:1202–1219CrossRefGoogle Scholar
  23. Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24:583–594CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations