Advertisement

Mine Water and the Environment

, Volume 38, Issue 4, pp 808–816 | Cite as

Effect of Si on As Speciation and Distribution in Rice near the Shimen Realgar Mine

  • Hua Peng
  • Xionghui Ji
  • Zhu Jian
  • Wei Wei
  • Cai Jiapei
  • Elena Bocharnikova
  • Vladimir MatichenkovEmail author
Technical Article
  • 38 Downloads

Abstract

Protection of natural water and cultivated crops from contamination in mining-affected areas is a problem in many regions. Wastewater and waste residuals from the Shimen realgar mine in Hunan Province, China, pose a high risk of arsenic (As) poisoning. The potassium silicate (PS)-assisted mechanisms of As mobility and accumulation reduction in a paddy soil–plant system were investigated. In a vegetation experiment, rice was grown in moderately and highly As-polluted soil (30.6 and 66.9 mg kg−1 of As, correspondingly) with and without PS. Total As and silicon (Si) in roots, shoots, and grains and the forms of As in the grains were analyzed. Sequential extraction of the As in the soil showed that the PS significantly reduced the mobility of As in the soil and its accumulation by rice. Several PS-mediated mechanisms were discussed: (1) dissolution of PS monosilicic acid enhances the sorption capacity of Si-based minerals for As; (2) increased pH in the soil solution provides higher As sorption by soil; (3) Si-induced competitive inhibition of As(III) transport initiated by Lsi1 and Lsi2. The results indicate the potential of using soluble Si to reduce As mobility and biotoxicity at sites with high levels of As in wastewater, tailings, and waste residuals.

Keywords

As(V) As(III) Dimethylarsinic acid Potassium silicate Sequential soil extraction 

Wirkung von Si auf As-Speziationen und Verteilung in Reispflanzen in der Umgebung der Shimen-Realgar-Mine

Zusammenfassung

Der Schutz von natürlichen Wasserressourcen und von Kulturpflanzen vor Kontaminationen ist in vielen bergbaubeeinflussten Gebieten ein Problem. Bergbauabfälle und -abwässer aus der Shimen-Realgar-Mine in der chinesischen Provinz Hunan weisen ein hohes toxisches Risikopotenzial bzgl. Arsen (As) auf. In dieser Studie wurden die durch Kaliumsilicat (PS) unterstützten Mechanismen der As-Mobilität und Akkumulationsreduktion in einem Nassreis-Kulturpflanzen-System untersucht. In Vegetationsexperimenten wurde Reis auf mäßig sowie stark As-belastetem Boden (entsprechend 30,6 und 66,9 mg kg-1 As) mit und ohne PS angebaut. Die gesamte As- und Silizium- (Si) Verteilung in Wurzeln, Sprossen und Körnern sowie die As-Speziation in den Körnern wurde analysiert. Eine sequentielle Extraktion von As im Boden zeigte, dass PS die Mobilität von As im Boden und die Anreicherung in der Reispflanze signifikant verringerte. Verschiedene PS-induzierte Mechanismen sind vermutlich dafür verantwortlich: (1) Die Auflösung von PS-Monokieselsäure erhöht die Sorptionskapazität von Si-haltigen Mineralien für As; (2) Erhöhte pH-Werte in der Bodenlösung bedingen eine höhere As-Sorption im Boden; (3) Eine Si-induzierte kompetitive Hemmung des durch Lsi1 und Lsi2 ausgelösten As (III) -Transports. Die Ergebnisse zeigen das Potenzial von löslichem Si zur Verringerung der As-Mobilität und der Biotoxizität an Standorten mit hohen As-Gehalten in Bergbauabwässern, Tailings und Abfallrückständen.

Efecto del Si en la especiación y distribución de As en el arroz cerca de la mina de rejalgar Shimen

Resumen

La protección del agua natural y los cultivos de la contaminación en las áreas afectadas por la minería es un problema en muchas regiones. Las aguas residuales y los residuos de la mina de rejalgar Shimen, en la provincia de Hunan, China, representan un alto riesgo de envenenamiento por arsénico (As). Se investigaron los mecanismos asistidos por el silicato de potasio (PS) de la movilidad del As y la reducción de la acumulación en un sistema de suelo-planta de arroz. En un experimento de vegetación, el arroz se cultivó en un suelo moderadamente y altamente contaminado con As (30,6 y 66,9 mg kg-1 de As, respectivamente) con y sin PS. Se analizaron el As total y el silicio (Si) en raíces, brotes y granos y las formas químicas de As en los granos. La extracción secuencial del As en el suelo mostró que el PS redujo significativamente la movilidad del As en el suelo y su acumulación por el arroz. Se discutieron varios mecanismos mediados por PS: (1) la disolución del ácido monosilícico PS aumenta la capacidad de sorción de los minerales a base de Si para As; (2) el aumento del pH en la solución del suelo proporciona una mayor sorción de As por el suelo; (3) inhibición competitiva inducida por Si del transporte de As (III) iniciado por Lsi1 y Lsi2. Los resultados indican el potencial del uso de Si soluble para reducir la movilidad y biotoxicidad de As en sitios con altos niveles de As en aguas residuales, relaves y residuos.

硅对石门雄黄矿(Shimen Realgar)附近水稻砷形态和分布的影响

抽象

保护天然水和农作免受矿区污染是许多地区面临的难题。湖南石门雄黄矿的废水和固废具有高砷毒性风险。研究了硅酸钾(PS)改变水稻-土壤-植物系统砷迁移特性和减少砷积累的机理。在种植试验中,将水稻分别种植于含和不含硅酸钾(PS)的中度和高度污染土壤(30.6和66.9mg/ kg的砷)。分析了根、芽、稻粒的总砷和硅,研究了稻粒中砷的形态。土壤的砷顺序提取试验表明,硅酸钾(PS)显著降低了砷在土壤中的迁移及水稻中的积累。讨论了硅酸钾(PS)的作用机理:(1)硅酸钾(PS)的单硅酸溶解性提高了含硅矿物的砷吸附能力;(2)升高的土壤溶液pH值增强了土壤的砷吸附性;(3)Lsi1和Lsi2形成了硅对砷的诱发竞争性砷(III)迁移抑制作用。结果表明,可溶性Si可降低了废水、尾矿和废渣等含高砷场地的砷迁移和生物毒性

Notes

Acknowledgements

This work was financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grants 2016YFD0800705 and 2017YFD0801504), the Hunan Provincial Natural Science Foundation, China (Grant JJ20166066) and the Ministry of Science and Higher Education of RF, theme AAAA-A17-117030 110137-5 and AAAA-A17-117030110139-9.

References

  1. Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128.  https://doi.org/10.1104/pp.010733Abedin CrossRefGoogle Scholar
  2. Bakhat HF, Bibi N, Zia Z, Abbas S, Hammad HM, Fahad S, Ashraf MR, Shah GM, Rabbani F, Saeed S (2018) Silicon mitigates biotic stresses in crop plants: a review. Crop Prot 104(1):21–34.  https://doi.org/10.1016/j.cropro.2017.10.008 CrossRefGoogle Scholar
  3. Bocharnikova EA, Matichenkov VV (2012) Influence of plant associations on the silicon cycle in the soil–plant system. Appl Ecol Environ Res 10(4):547–560.  https://doi.org/10.15666/aeer/1004_547560 CrossRefGoogle Scholar
  4. Bradham KD, Diamond GL, Burgess M, Juhasz A, Klotzbach JM, Maddaloni M et al (2018) In vivo and in vitro methods for evaluating soil arsenic bioavailability: relevant to human health risk assessment. J Toxicol Environ Health Part B 21(2):83–114.  https://doi.org/10.1080/10937404.2018.1440902 CrossRefGoogle Scholar
  5. Buck GB, Korndörfer GH, Antonio Nolla A, Coelho L (2008) Potassium silicate as foliar spray and rice blast control. J Plant Nutr 31(2):231–237.  https://doi.org/10.1080/01904160701853704 CrossRefGoogle Scholar
  6. Chi S, Hu J, Zheng J, Dong F (2017) Study on the effects of arsenic pollution on the communities of macro-invertebrate in Xieshui River. Acta Ecol Sin 37(1):1–9.  https://doi.org/10.1016/j.chnaes.2016.09.003 CrossRefGoogle Scholar
  7. Choudhury B, Chowdhury S, Biswas AK (2011) Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J Plant Interact 1:15–24.  https://doi.org/10.1080/17429140903487552 CrossRefGoogle Scholar
  8. Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci 176:785–794.  https://doi.org/10.1002/jpln.201200440 CrossRefGoogle Scholar
  9. Geng A, Wang X, Wu L, Wang F, Chen Y, Yang H, Zhang Z, Zhao X (2017) Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil. Ecotoxicol Environ Saf 137(1):172–178.  https://doi.org/10.1080/00380768.2011.565479 CrossRefGoogle Scholar
  10. Georgiadis A, Sauer D, Herrmann L, Breuer J, Zarei M, Stahr K (2014) Testing a new method for sequential silicon extraction on soils of a temperate–humid climate. Soil Res 52(7):645–657.  https://doi.org/10.1071/SR14016 CrossRefGoogle Scholar
  11. Gupta M, Khan E (2015) Mechanism of arsenic toxicity and tolerance in plants: role of silicon and signalling molecules. In: Tripathi BN, Muller M (eds) Stress responses in plants. Springer, Cham, pp 143–157CrossRefGoogle Scholar
  12. Gupta M, Srivastava S, Huang HG, Romero-Puertas MC, Sandalio LM (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Berlin, pp 169–179CrossRefGoogle Scholar
  13. Herreweghe SV, Swennen R, Vandecasteele C, Cappuyns V (2003) Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ Pollut 122:323–342.  https://doi.org/10.1016/S0269-7491(02)00332-9 CrossRefGoogle Scholar
  14. Inskeep WP, McDermott TR, Fendorf S (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. In: Frankenberger JWT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 183–215Google Scholar
  15. Ji X, Liu S, Hua P, Bocharnikova EA, Matychenov VV, Khomyakov DM (2017) Cadmium and arsenic adsorption in aqueous systems in the presence of monosilicic acid. Mosc Univ Soil Sci Bull 72(5):199–206.  https://doi.org/10.3103/s0147687417050040 CrossRefGoogle Scholar
  16. Khan MA, Stroud JL, Zhu YG, McGrath SP, Zhao FJ (2010) Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol 44:8515–8521.  https://doi.org/10.1021/es101952f CrossRefGoogle Scholar
  17. Kukier U, Chaney RL (2002) Growing rice grain with controlled cadmium concentrations. J Plant Nutr 25(8):1793–1820CrossRefGoogle Scholar
  18. Kumar M, Ramanathan AL, Rahman MM, Naidu R (2016) Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Sci Total Environ 573:1103–1114.  https://doi.org/10.1016/j.scitotenv.2016.08.109 CrossRefGoogle Scholar
  19. Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57(1):4–13.  https://doi.org/10.1093/pcp/pcv143 CrossRefGoogle Scholar
  20. Liu J, Qu P, Zhang W, Dong Y, Wang M (2014) Variations among rice cultivars in subcellular distribution of Cd: the relationship between translocation and grain accumulation. Environ Exp Bot 107:25–31.  https://doi.org/10.1016/j.envexpbot.2014.05.004 CrossRefGoogle Scholar
  21. Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411.  https://doi.org/10.3389/fpls.2017.00411 CrossRefGoogle Scholar
  22. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  23. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212.  https://doi.org/10.1038/nature05964 CrossRefGoogle Scholar
  24. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. PNAS 105:9931–9935.  https://doi.org/10.1073/pnas.0802361105 CrossRefGoogle Scholar
  25. Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL (2011) Arsenic exposure and the induction of human cancers. J Toxicol.  https://doi.org/10.1155/2011/431287 CrossRefGoogle Scholar
  26. Matichenkov VV (2007) Soil gradation on deficiency of plant-available Si. Agrochemistry 7:22–31Google Scholar
  27. Matichenkov VV, Ammosova YM (1996) Effect of amorphous silica on soil properties of a sod-podzolic soil. Eurasian Soil Sci 28:87–99Google Scholar
  28. Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17.  https://doi.org/10.1016/j.envexpbot.2015.07.001 CrossRefGoogle Scholar
  29. Miles N, Manson AD, Rhodes R, van Antwerpen R, Weigel A (2014) Extractable silicon in soils of the South African sugar industry and relationships with crop uptake. Commun Soil Sci Plant 45(22):2949–2958.  https://doi.org/10.1080/00103624.2014.956881 CrossRefGoogle Scholar
  30. Möller T, Sylvester P (2008) Effect of silica and pH on arsenic uptake by resin/iron oxide hybrid media. Water Res 42(6–7):0–1766Google Scholar
  31. Mullin JB, Riley JP (1955) The colorimetric determination of silicate with special reference to sea and natural waters. Anal Chim Acta 12:162–176.  https://doi.org/10.1016/S0003-2670(00)87825-3 CrossRefGoogle Scholar
  32. NIAES (1987) Official methods of analysis of fertilizers. Proc Nat Inst Agro Environ Sci 124:36–37Google Scholar
  33. Panaullah GM, Alam T, Hossain MB et al (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31–39.  https://doi.org/10.1007/s11104-008-9786-y CrossRefGoogle Scholar
  34. Peng H, Ji X, Wei W, Bocharnikova E, Matichenkov V (2017) As and Cd sorption on selected Si-rich substances. Water Air Soil Pollut 228(8):288–298.  https://doi.org/10.1007/s11270-017-3473-7 CrossRefGoogle Scholar
  35. Raj R, Pannu PPS (2017) Management of rice blast with different fungicides and potassium silicate under in vitro and in vivo conditions. Plant Pathol 99(3):707–712.  https://doi.org/10.4454/jpp.v99i3.3993 CrossRefGoogle Scholar
  36. Sanglard LMVP, Detmann KC, Martins SCV et al (2016) The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environ Exp Bot 123:22–36.  https://doi.org/10.1016/j.envexpbot.2015.11.004 CrossRefGoogle Scholar
  37. Seyfferth AL, Limmer MA, Dykes GE (2018) On the use of silicon as an agronomic mitigation strategy to decrease arsenic uptake by rice. Adv Agron 149:49–91.  https://doi.org/10.1016/bs.agron.2018.01.002 CrossRefGoogle Scholar
  38. Shi GL, Lou LQ, Zhuang S, Cai Q (2013) Arsenic, copper and zinc contamination in soil and wheat during coal mining with assessment of health risks for the inhabitants of Huaibei, China. Environ Sci Pollut Res 20(12):8435–8445.  https://doi.org/10.1007/s11356-013-1842-3 CrossRefGoogle Scholar
  39. Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Rep 1:35–46.  https://doi.org/10.1007/s40726-015-0004-2 CrossRefGoogle Scholar
  40. Silva AJD, Nascimento CW, Gouveianeto ADS, Junior EAS (2015) Effects of silicon on alleviating arsenic toxicity in maize plants. Revista Bras De Ciência Do Solo 39(1):289–296.  https://doi.org/10.1590/01000683rbcs20150176 CrossRefGoogle Scholar
  41. Smith E, Naidu R, Altson AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195CrossRefGoogle Scholar
  42. Sparks DL, Page AL, Helmke PA et al (1996) Methods of soil analysis: part 3. Chemical methods, vol 5. SSSA Book Ser, MadisonGoogle Scholar
  43. Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328(1–2):27–34.  https://doi.org/10.1007/s11104-009-0074-2 CrossRefGoogle Scholar
  44. Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044.  https://doi.org/10.1021/es034383n CrossRefGoogle Scholar
  45. Tang JW, Liao YP, Yang ZH, Chai LY, Yang WC (2016) Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China. J Soil Sedim 16:1519–1528.  https://doi.org/10.1007/s11368-015-1345-6 CrossRefGoogle Scholar
  46. Tripathi PRD, Tripathi RP, Singh S et al (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103.  https://doi.org/10.1016/j.ecoleng.2012.12.057 CrossRefGoogle Scholar
  47. Vaculik M, Pavlovic A, Lux A (2015) Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicol Environ Saf 120:66–73.  https://doi.org/10.1016/j.ecoenv.2015.05.026 CrossRefGoogle Scholar
  48. Wei X, Liu Y, Zhan Q, Zhang P, Zhao D, Xu B, Bocharnikova E, Matichenkov V (2018) Effect of Si soil amendments on As, Cd, and Pb bioavailability in contaminated paddy soils. Paddy Water Environ 16(1):173–181.  https://doi.org/10.1007/s10333-017-0629-4 CrossRefGoogle Scholar
  49. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859.  https://doi.org/10.1021/es070627i CrossRefGoogle Scholar
  50. Yamamoto T, Nakamura A, Iwai H, Ma JF, Yokoyama R, Nishitani K, Satoh S, Furukawa J (2012) Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J Plant Res 123:771–779.  https://doi.org/10.1007/s10265-012-0489-3 CrossRefGoogle Scholar
  51. Yang F, Xie S, Wei C, Liu J, Zhang H, Chen T, Zang J (2018) Arsenic characteristics in the terrestrial environment in the vicinity of the Shimenrealgar mine, China. Sci Total Environ 626:77–86.  https://doi.org/10.1016/j.scitotenv.2018.01.079 CrossRefGoogle Scholar
  52. Ye X, Ma Y, Sun B (2012) Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety. J Environ Sci 24(9):1647–1654.  https://doi.org/10.1016/S1001-0742(11)60982-0 CrossRefGoogle Scholar
  53. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559.  https://doi.org/10.1146/annurev-arplant-042809-112152 CrossRefGoogle Scholar
  54. Zheng JX, Zhou LF, Ju-Xiang HU, Wang HJ, Peng Q (2012) Characteristics of zooplankton community in arsenic polluted water of Xieshui River. J Hydrol 33(6):56–61Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hua Peng
    • 1
    • 2
  • Xionghui Ji
    • 2
    • 3
  • Zhu Jian
    • 1
    • 2
  • Wei Wei
    • 4
  • Cai Jiapei
    • 4
  • Elena Bocharnikova
    • 5
  • Vladimir Matichenkov
    • 5
    Email author
  1. 1.Longping BranchCentral South UniversityChangshaChina
  2. 2.Institute of Agriculture Environment and EcologyAcademy of Agricultural Science (HAAS)ChangshaChina
  3. 3.Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of AgricultureChangshaChina
  4. 4.Longping BranchHunan UniversityChangshaChina
  5. 5.Institute of Basic Biological Problems RASPushchinoRussia

Personalised recommendations