Advertisement

Spatial Attenuation of Mining/Smelting-Derived Metal Pollution in Sediments From Tributaries of the Upper Han River, China

  • Lezhang Wei
  • Minyao Cai
  • Yongming Du
  • Jinfeng Tang
  • Qihang WuEmail author
  • Tangfu Xiao
  • Dinggui Luo
  • Xuexia Huang
  • Yu Liu
  • Yingheng Fei
  • Yongheng Chen
Technical Article
  • 26 Downloads

Abstract

Spatial variations in contaminant distribution in river sediments are useful for pollutant diagnosis. This study investigated 18 metals/metalloids (Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sn, Tl, U, V, Zn, and Hg) in sediments of rivers impacted by Sb and Hg mining/smelting activities in headwater catchments of the Han River Basin, China. Source and pollution assessments of the metals were examined based on their spatial variations. The results showed that sediment concentrations of Cu, Cr, Tl, U, Pb and typically, Ag, Mo, Sb, and Hg were generally elevated. However, their concentrations decreased from upstream to downstream along the river gradient. By combining their spatial variations with the results of multivariate analyses, it was deduced that the elevated concentrations were due to mining/smelting activities. At downstream sites, all elevated concentrations decreased to near background levels, except for those of Hg and Sb. The maximum concentrations of Hg and Sb in the river sediments, which were two- to three-orders of magnitude higher than the reference values, are still considered to pose very high potential ecological risks.

Keywords

Spatial variations Metal transport Source identification 

汉江(中国)上游支流沉积物中采矿/冶炼金属污染物的空间衰减

摘要

河流沉积物中污染物空间分布研究有助于污染和污染源分析。研究了汉江(中国)流域源区锑、汞开采/冶炼活动引起的18种河流沉积物金属/类金属 (Ag、As、Ba、Cd、Co、Cr、Cu、Mn、Mo、Ni、Pb、Sb、Sn、Tl、U、V、Zn和Hg) 污染。从空间变化角度,进行了污染源和污染程度评价。结果表明,沉积物中Cu、Cr、Tl、U、Pb、Ag、Mo、Sb和Hg的浓度普遍升高。然而,它们的浓度又从上游至下游沿河道降低。综合污染物空间分布及多元分析结果推断可知,污染物浓度升高主要由采矿/冶炼活动引起。在河流下游,除汞和锑外,升高浓度普遍降至接近水环境背景值。河流沉积物中汞和锑的最大浓度比参考值高出2~3个数量级,仍具有很高的潜在生态风险。

Rückhaltung von metallführenden Bergbau- und Verhüttungsschadstoffen in Sedimenten von Vorflutern des Oberen Han-Flusses, China

Zusammenfassung

Räumlich variierende Schadstoffverteilungen sind nutzbar bei Untersuchungen zu Schadstoffbelastungen in Flusssedimenten. In dieser Studie wurden 18 verschiedene Metalle bzw. Metalloide (Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sn, Tl, U, V, Zn , Hg) untersucht, die aus Sedimenten von Vorflutern aus dem Einzugsgebiet des Han-Flusses (China) stammen. Diese Sedimente sind durch den Antimon- bzw. Quecksilberbergbau und deren Verhüttungsanlagen beeinflusst. Auf der Basis ihrer räumlichen Verteilung konnten die Schadstoffquellen für die Metalle/Metalloide bewertet werden. Die Ergebnisse zeigen, dass die Sedimentkonzentrationen von Cu, Cr, Tl, U, Pb und typischerweise auch von Ag, Mo, Sb und Hg im Allgemeinen erhöht waren. Die Konzentrationen nahmen in Fließrichtung, d.h. vom Ober- zum Unterlauf, ab. Durch einen Vergleich der räumlichen Variationen der Stoffe mit Ergebnisse aus multivariaten Statistikuntersuchungen konnte abgeleitet werden, dass die erhöhten Konzentrationen aus Bergbau- und Verhüttungstätigkeiten stammten. Stromabwärts verminderten sich die meisten Stoffgehalte bis in den Bereich der Hintergrundkonzentrationen. Ausnahmen bildeten Quecksilber und Antimon. Die maximalen Konzentrationen für Hg und Sb in den Flusssedimenten lagen um zwei bis drei Größenordnungen oberhalb der Referenzwerte und stellen nach wie vor ein hohes potentielles ökologisches Risiko dar.

Atenuación Especial de la Contaminación por Metales Derivadas de las Actividades de Minería y Fundición en los sedimentos de los tributarios del río Han superior, China

Resumen

Las variaciones espaciales en la distribución de contaminantes en los sedimentos de los ríos son útiles para el diagnóstico de contaminantes. Este estudio investigó 18 metales/metaloides (Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sn, Tl, U, V, Zn y Hg) en sedimentos de ríos impactados por las actividades de minería/fundición de Sb y Hg en las cuencas hidrográficas de la cuenca del río Han, China. Las evaluaciones de la fuente y de la contaminación de los metales se realizaron en función de sus variaciones espaciales. Los resultados mostraron que las concentraciones de sedimentos de Cu, Cr, Tl, U, Pb y típicamente, Ag, Mo, Sb y Hg eran generalmente elevadas. Sin embargo, sus concentraciones disminuyeron de río arriba a río abajo a lo largo del gradiente del río. Al combinar sus variaciones espaciales con los resultados de análisis multivariantes, se dedujo que las concentraciones elevadas se debieron a actividades de minería/fundición. En los sitios aguas abajo, las concentraciones elevadas disminuyeron a niveles cercanos a los normales excepto para Hg y Sb. Se considera que las concentraciones máximas de Hg y Sb en los sedimentos del río, que fueron de dos a tres órdenes de magnitud más altas que los valores de referencia, plantean riesgos ecológicos potenciales muy altos.

Notes

Acknowledgements

This project was supported by the Program Foundation of the Institute for Scientific Research of Karst Area of NSFC-GZGOV (U1612442), Science and Technology Planning Project of Guangdong Province (2015A020215036, 2018A030310309), Guangzhou Science and Technology Project (201607010057), Guangzhou University’s 2017 training program for young top-notch personnel (BJ201713), and High Level University Construction Project of Guangdong Province (Regional water environment safety and water ecological protection).

References

  1. Anju M, Banerjee DK (2012) Multivariate statistical analysis of heavy metals in soils of a Pb–Zn mining area, India. Environ Monit Assess 184(7):4191–4206Google Scholar
  2. Audry S, Blanc G, Schäfer J (2005) The impact of sulphide oxidation on dissolved metal (Cd, Zn, Cu, Cr, Co, Ni, U) inputs into the Lot–Garonne fluvial system (France). Appl Geochem 20(5):919–931Google Scholar
  3. Bartoli G, Papa S, Sagnella E, Fioretto A (2012) Heavy metal content in sediments along the Calore River: relationships with physical–chemical characteristics. J Environ Manage 95:S9–S14Google Scholar
  4. Chai L, Li H, Yang Z, Min X, Liao Q, Liu Y, Xu J (2017) Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environ Sci Pollut R 24(1):874–885Google Scholar
  5. García-Ordiales E, Esbrí JM, Covelli S, López-Berdonces MA, Higueras PL, Loredo J (2016) Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almadén mercury district (Spain). Environ Sci Pollut R 23(7):6024–6038Google Scholar
  6. Gibson BD, Ptacek CJ, Blowes DW, Daugherty SD (2015) Sediment resuspension under variable geochemical conditions and implications for contaminant release. J Soils Sediments 15(7):1644–1656Google Scholar
  7. Håkanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14(8):975–1001Google Scholar
  8. Hammarstrom JM, Seal Ii RR, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern U.S.: recycling of metals and acidity in surficial environments. Chem Geol 215(1–4):407–431Google Scholar
  9. Hou M, Tang Y (2006) Metallogenic geochemistry and physico -chemical conditions of silurian Pb–Zn mineralization in the Xunyang County, Shaanxi. Northwest Geol 39(3):28–38 [in Chinese]Google Scholar
  10. Li S, Zhang Q (2008) Geochemistry of the upper Han River basin, China, 1: spatial distribution of major ion compositions and their controlling factors. Appl Geochem 23(12):3535–3544Google Scholar
  11. Li S, Zhang Q (2010) Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. J Hazard Mater 176(1–3):579–588Google Scholar
  12. Li S, Gu S, Liu W, Han H, Zhang Q (2008) Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena 75(2):216–222Google Scholar
  13. Li S, Gu S, Tan X, Zhang Q (2009a) Water quality in the upper Han River basin, China: the impacts of land use/land cover in riparian buffer zone. J Hazard Mater 165(1–3):317–324Google Scholar
  14. Li S, Liu W, Gu S, Cheng X, Xu Z, Zhang Q (2009b) Spatio-temporal dynamics of nutrients in the upper Han River basin, China. J Hazard Mater 162(2–3):1340–1346Google Scholar
  15. Li S, Xu Z, Wang H, Wang J, Zhang Q (2009c) Geochemistry of the upper Han River basin, China: 3: anthropogenic inputs and chemical weathering to the dissolved load. Chem Geol 264(1–4):89–95Google Scholar
  16. Li X, Qi J, Wang C, Chen Y (2011) Distribution of heavy metals in waters and pollution assessment in thallium contaminated area of Yunfu, Guangdong. Environ Sci 32(2):1321–1328 [in Chinese]Google Scholar
  17. Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, middle China. J Geochem Explor 132:75–83Google Scholar
  18. Lin L (2009) Discussion of calculating heavy metals’ toxicity coefficient by toxicological safety evaluation data. In: Proc, advanced seminar on 2009 heavy metal pollution monitoring, risk assessment and remediation technology, energy resources and environment professional council of all-china environment federation, Beijing pp 57–60 (in Chinese) Google Scholar
  19. Liu H, Xiong Z, Jiang X, Liu G, Liu W (2016a) Heavy metal concentrations in riparian soils along the Han River, China: the importance of soil properties, topography and upland land use. Ecolog Eng 97:545–552Google Scholar
  20. Liu J, Wang J, Chen Y, Xie X, Qi J, Lippold H, Luo D, Wang C, Su L, He C, Wu Q (2016b) Thallium transformation and partitioning during Pb–Zn smelting and environmental implications. Environ Pollut 212:77–89Google Scholar
  21. Liu J, Xu Y, Cheng Y, Zhao Y, Pan Y, Fu G, Dai Y (2017) Occurrence and risk assessment of heavy metals in sediments of the Xiangjiang River, China. Environ Sci Pollut R 24(3):2711–2723Google Scholar
  22. Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20(3):639–659Google Scholar
  23. Moore F, Aghazadeh AA (2012) Trace metal occurrence and mobility assessment in stream sediments near the Sungun porphyry copper deposit in northwest Iran. Mine Water Environ 31(1):29–39Google Scholar
  24. Peng D (1997) Discussion on mineralization regularities of metal mineral resource in Qinling and Dabashan region. Miner Resour Geol 11(3):158–165 [in Chinese]Google Scholar
  25. Roussiez V, Ludwig W, Probst JL, Monaco A (2005) Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on 133Cs normalization and lead isotope measurements. Environ Pollut 138(1):167–177Google Scholar
  26. Saeedi M, Li LY, Salmanzadeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227:9–17Google Scholar
  27. Shi C, Liang M, Feng B (2016) Average background values of 39 chemical elements in stream sediments of China. Earth Sci 41(2):234–251 [in Chinese]Google Scholar
  28. Sims DB, Hudson AC, Keller JE, Konstantinos VI, Konstantinos MP (2017) Trace element scavenging in dry wash surficial sediments in an arid region of southern Nevada, USA. Mine Water Environ 36(1):124–132Google Scholar
  29. Sin SN, Chua H, Lo W, Ng LM (2001) Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int 26(5):297–301Google Scholar
  30. Singh KP, Mohan D, Singh VK, Malik A (2005) Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. J Hydrol 312(1):14–27Google Scholar
  31. Thorslund J, Jarsjö J, Chalov SR, Belozerova EV (2012) Gold mining impact on riverine heavy metal transport in a sparsely monitored region: the upper Lake Baikal Basin case. J Environ Monitor 14(10):2780–2792Google Scholar
  32. Velleux ML, England JF Jr, Julien PY (2008) TREX: spatially distributed model to assess watershed contaminant transport and fate. Sci Total Environ 404(1):113–128Google Scholar
  33. Wei L, Kinouchi T, Yoshimura K, Velleux ML (2017) Modeling watershed-scale 137Cs transport in a forested catchment affected by the Fukushima Dai-ichi nuclear power plant accident. J Environ Radioactiv 171:21–33Google Scholar
  34. Wentzell PD, Andrews DT, Hamilton DC, Faber K, Kowalski BR (1997) Maximum likelihood principal component analysis. J Chemometr 11(4):339–366Google Scholar
  35. Wu Q, Tam NF, Leung JY, Zhou X, Fu J, Yao B, Huang X. Xia L (2014) Ecological risk and pollution history of heavy metals in Nansha mangrove, South China. Ecotox Environ Safe 104:143–151Google Scholar
  36. Xiao T, Guha J, Liu CQ, Zheng B, Wilson G, Ning Z, He L (2007) Potential health risk in areas of high natural concentrations of thallium and importance of urine screening. Appl Geochem 22(5):919–929Google Scholar
  37. Xu Z, Ni J, Tuo X, Zhang C (2008) Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ Sci Technol 31(2):112–115 [in Chinese]Google Scholar
  38. Yan YB, He Y (1996) The geochemical feature of elements in sediment in the Han River. Sci Geograph Sinica 16(4):312–316 [in Chinese]Google Scholar
  39. Zhang CS, Zhang S, Zhang LC, Wang LJ (1995) Calculation of heavy metal contents in sediments of the Changjiang River system. Acta Sci Circumstant 15(3):257–264 [in Chinese]Google Scholar
  40. Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, Cui F, Zhu MY, Shen LQ, Hu L (2014a) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73:270–281Google Scholar
  41. Zhang H, Yu J, Zhou S (2014b) Spatial distribution of As, Cr, Pb, Cd, Cu, and Zn in the water and sediment of a river impacted by gold mining. Mine Water Environ 33(3):206–216Google Scholar
  42. Zhang H, Jiang Y, Wang M, Wang P, Shi G, Ding M (2017) Spatial characterization, risk assessment, and statistical source identification of the dissolved trace elements in the Ganjiang River—feeding tributary of the Poyang Lake, China. Environ Sci Pollut R 24(3):2890–2903Google Scholar
  43. Zhao Z (2014) Risk assessment of heavy metal pollution in surficial sediments from Han jiang upstream section of Hanzhong City. Bull Soil Water Conserv 34(5):158–161 (in Chinese)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lezhang Wei
    • 1
    • 2
  • Minyao Cai
    • 1
  • Yongming Du
    • 1
  • Jinfeng Tang
    • 1
    • 2
  • Qihang Wu
    • 3
    • 4
    Email author
  • Tangfu Xiao
    • 1
  • Dinggui Luo
    • 1
  • Xuexia Huang
    • 1
  • Yu Liu
    • 1
    • 2
  • Yingheng Fei
    • 1
  • Yongheng Chen
    • 3
  1. 1.School of Environmental Science and EngineeringGuangzhou UniversityGuangzhouChina
  2. 2.Linköping University, Guangzhou University Research Center on Urban Sustainable Development, Guangzhou UniversityGuangzhouChina
  3. 3.Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater BayGuangzhou UniversityGuangzhouChina
  4. 4.Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong ProvinceGuangzhou UniversityGuangzhouChina

Personalised recommendations