Advertisement

Influence of Organic Carbon Sources on Metal Removal from Mine Impacted Water Using Sulfate-Reducing Bacteria Bioreactors in Cold Climates

  • Guillaume Nielsen
  • Lucie Coudert
  • Amelie Janin
  • Jean Francois BlaisEmail author
  • Guy Mercier
Technical Article

Abstract

Acid mine drainage (AMD) is a major environmental challenge for the mining industry in northern climates. Laboratory-scale experiments were conducted to test various simple and complex carbon sources available in the Yukon as electron donors for sulfate reduction to allow the subsequent removal of Cd and Zn from a Yukon AMD. The 1 L capacity bioreactors were monitored biweekly at 5 °C. After 162 days, a diminution of both total organic carbon and sulfate concentrations was observed in all bioreactors. A long adaptation period was necessary before consumption of the carbon source started, which might be due to the cold temperature. Simple organic sources of carbon (methanol and ethylene glycol) and complex organic sources of carbon (potato oil, brewery residue, peat, and straw) were used to support SRB growth. Methanol and ethylene glycol led to a diminution of sulfate concentrations of 71.2 and 36.9%, respectively, while the decrease of sulfate concentrations was limited to 13.8 and 5.3% when using peat and straw, respectively.

Keywords

Mine water treatment Passive biological treatment Zinc Cadmium 

Einfluss der organischen Kohlenstoffquelle bei der bakteriellen Sulfatreduktion in Bioreaktoren auf die Metallabreicherung bergbaubeeinflusster Wässer in kalten Klimaten

Zusammenfassung

Saures Bergbauwasser (AMD) stellt ein großes Umweltproblem für die Bergbauindustrie in nördlichen Klimaten dar. In Laborexperimenten wurden verschiedene einfache und komplexe Kohlenstoffquellen als Elektronendonatoren für die Sulfatreduktion getestet, um anschließend Cd und Zn zu entfernen. Der verwendete Bioreaktor hatte ein Fassungs-vermögen von 1 L, wurde bei einer Temperatur von 5°C betrieben und vierzehntägig überwacht. In allen Bioreaktoren wurde nach 162 Tagen sowohl eine Minderung des gesamten organischen Kohlenstoffs als auch der Sulfatkonzentration beobachtet. Auf Grund der kalten Temperaturen war eine lange Anpassungszeit notwendig, bevor der Kohlenstoffabbau begann. Um das Wachstum der sulfatreduzierenden Bakterien zu unterstützen, wurden einfache (Methanol und Ethylenglykol) und komplexe organische Kohlenstoffquellen (Kartoffelöl, Treber, Torf und Stroh), genutzt. Methanol und Ethylenglykol führten zu einer Sulfatreduktion von 71,2 bzw. 36,9 %. Demgegenüber war die Sulfatreduktion bei der Verwendung von Torf und Stroh auf 13,8 bzw. 5,3 % begrenzt.

Influencia de las fuentes de carbono sobre la remoción de metales en agua impactada por la actividad minera utilizando biorreactores con bacterias sulfato reductoras en climas fríos

Resumen

El drenaje ácido de la mina (AMD) es un desafío ambiental importante para la industria minera en climas nórdicos. Se realizaron experimentos a escala de laboratorio para probar varias fuentes de carbono simples y complejas disponibles en Yukon como donantes de electrones para la reducción de sulfato para permitir la posterior eliminación de Cd y Zn de un AMD de Yukon. Los biorreactores de 1 L de capacidad se controlaron cada dos semanas a 5 °C. Después de 162 días, se observó una disminución de las concentraciones totales de carbono orgánico y sulfato en todos los biorreactores. Se necesitó un largo período de adaptación antes de que comenzara el consumo de la fuente de carbono, lo que podría deberse a la baja temperatura. Se utilizaron fuentes orgánicas simples de carbono (metanol y etilenglicol) y fuentes orgánicas complejas de carbono (aceite de patata, residuos de cervecería, turba y paja) para permitir el crecimiento de SRB. El metanol y el etilenglicol permitieron una disminución de las concentraciones de sulfato de 71,2 y 36,9%, respectivamente, mientras que la disminución de las concentraciones de sulfato fue de sólo 13,8 y 5,3% cuando se usaron turba y paja, respectivamente.

有机碳源对硫酸盐还原反应器寒冷季节去除矿井水金属的影响

抽象

酸性矿井废水是北方气候区采矿工业不得不面临的主要环境挑战。采用室内试验方法研究了Yukon地区各种简单和复杂的硫酸盐还原电子供体碳源,以用去除Yukon酸性废水中镉和锌。在5°C试验条件下,每两星期监测一次1L生物反应器。直至试验进行162天后,才观察到反应器内总有机碳和硫酸盐浓度减小。碳源消耗开始之前的适应期比较长,应该是由寒冷的温度引起。简易碳源(甲醇和乙二醇)和复杂有机碳源(马铃薯油、酿酒残渣、泥炭和稻草)都能维持硫酸盐还原菌生长。甲醇和乙二醇分别使硫酸盐浓度减少71.2和36.9%,而泥炭和稻草分别硫酸盐浓度减少不超过13.8 and 5.3%。

Notes

Acknowledgements

Sincere thanks are extended to the MITACS and Natural Sciences and Engineering Research Council of Canada for their financial contributions and to Alexco for the technical support provided to this study.

Supplementary material

10230_2018_580_MOESM1_ESM.docx (134 kb)
Supplementary material 1 (DOCX 134 KB)

References

  1. Amos PW, Younger PL (2003) Substrate characterization for a subsurface reactive barrier to peat colliery spoils leachate. Water Res 37:108–120Google Scholar
  2. Argun ME, Dursun S, Ozdemir C, Karatas M (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141(1):77–85Google Scholar
  3. Barnes LJ (1998) Removal of heavy metals and sulphate from contaminated groundwater using sulphate-reducing bacteria: development of a commercial process. Bioremed Technol 3:577–619Google Scholar
  4. Benner SG, Blowes DW, Ptacek CJ, Mayer KU (2002) Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Appl Geochem 17(3):301–320Google Scholar
  5. Bertolacini RJ, Barney JE (1957) Colorimetric determination of sulfate with barium chloranilate. Anal Chem Am Chem Soc 29:281–283Google Scholar
  6. Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4(5):331–343Google Scholar
  7. Chang IS, Shin PK, Kim BH (2000) Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res 34(4):1269–1277Google Scholar
  8. Christensen B, Laake M, Lien T (1996) Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment. Water Res 30(7):1617–1624Google Scholar
  9. Cocos IA, Zagury GJ, Bernard C, Samson R (2002) Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment. Water Res 32:167–177Google Scholar
  10. Coetser SE, Pulles W, Heath RGM, Cloete TE (2006) Chemical characterisation of organic electron donors for sulfate reduction for potential use in acid mine drainage treatment. Biodegradation 17(2):67–77Google Scholar
  11. Drury WJ (1999) Treatment of acid mine drainage with anaerobic solid-substrate reactors. Water Environ Res 71(6):1244–1250Google Scholar
  12. Drury WJ (2000) Modeling of sulfate reduction in anaerobic solid substrate bioreactors for mine drainage treatment. Mine Water Environ 19(1):19–29Google Scholar
  13. Dürre P, Bahl H, Gottschalk G (1988) Membrane processes and product formation in anaerobes. Handbook for Anaerobic Fermentations. Dekker, New York, pp 187–206Google Scholar
  14. Dvorak DH, Hedin RS, Edenborn HM, McIntire PE (1992) Treatment of metal contaminated water using bacterial sulphate reduction: results from pilot-scale reactors. Biotechnol Bioeng 40:609–616Google Scholar
  15. Edenborn HM (2004) Use of poly (lactic acid) amendments to promote the bacterial fixation of metals in zinc smelter tailings. Bioresour Technol 92:111–119Google Scholar
  16. Eger P, Lapakko K (1988) Nickel and copper removal from mine drainage by a natural wetland gas. In: Proceedings, American society of mining and reclamation, 17–22 April 1998, pp 301–309. https://www.asmr.us/Portals/0/Documents/Conference-Proceedings/1988-Volume-1/0301-Eger.pdf
  17. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208Google Scholar
  18. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418Google Scholar
  19. Gibert O, De Pablo J, Cortina JL, Ayora C (2002) Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments. Rev Environ Sci Biotechnol 1(4):327–333Google Scholar
  20. Gibert O, De Pablo J, Cortina JL, Ayora C (2004) Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Water Res 38(19):4186–4196Google Scholar
  21. Glombitza F (2001) Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Manag 21(2):197–203Google Scholar
  22. Hamai T, Kodera T, Sato Y, Takamoto K, Ikeda M, Hatsuya K, Hayashi K, Tendo H, Sunada K, Kobayashi M, Sakoda M, Sakata T, Masuda N (2015) The sequential experiments of passive treatment system using bioreactor for acid mine drainage in Japan. In: 10th ICARD and IMWA annual conference, 21–24 April 2015. http://www.imwa.info/docs/imwa_2015/IMWA2015_Hamai_023.pdf
  23. Hammack RW, Edenborn HM, Dvorak DH (1994) Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: a feasibility study. Water Res 28(11):2321–2329Google Scholar
  24. Hammer DA (1989) Constructed wetlands for wastewater treatment: municipal, industrial and agricultural. CRC Press, Boca RatonGoogle Scholar
  25. Hargrove RE, Alford JA (1974) Composition of milk products. In: Webb BH, Johnson AH, Alford JA (eds) Fundamentals of dairy chemistry. Avi Publishing Co, WestportGoogle Scholar
  26. Hiibel SR, Pereyra LP, Breazeal MVR, Reisman DJ, Reardon KF, Pruden A (2011) Effect of organic substrate on the microbial community structure in pilot-scale sulfate-reducing biochemical reactors treating mine drainage. Environ Eng Sci 28(8):563–572Google Scholar
  27. Janin A, Harrington J (2013) Passive treatment of mine drainage waters: the use of biochar and wood products to enhance metal removal efficiency. In: Proceedings, 2013 northern latitudes mining reclamation workshop and 38th annual meeting of the Canadian land reclamation association, overcoming northern challenges, pp 90–99Google Scholar
  28. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1):3–14Google Scholar
  29. Kaksonen AH, Plumb JJ, Franzmann PD, Puhakka JA (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal-and sulfate-containing wastewater. FEMS Microbiol Ecol 47(3):279–289Google Scholar
  30. Keng PS, Lee SL, Ha ST, Hung YT, Ong ST (2014) Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett 12(1):15–25Google Scholar
  31. Knee EM, Gong FC, Gao M, Teplitski M, Jones AR, Foxworthy A, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microbe Interact 14(6):775–784Google Scholar
  32. Kolmert A, Johnson DB (2001) Remediation of acidic waste waters using immobilized, acidophilic sulphate-reducing bacteria. J Chem Technol Biotechnol 76:836–843Google Scholar
  33. Kulkarni SJ, Kaware DJP (2013) A review on research for cadmium removal from effluent. Int J Eng Sci Innov Technol (IJESIT) 2(4):465–469Google Scholar
  34. Londry K (2013) Microbiology of metals attenuation. United Keno Hill mines, Technical report, Edmonton Waste Management Centre of Excellence, Edmonton, Ab, CanadaGoogle Scholar
  35. Luptakova A, Macingova E (2012) Alternative substrates of bacterial sulphate reduction suitable for the biological–chemical treatment of acid mine drainage. Acta Montan Slovaca 17(1):74–80Google Scholar
  36. Martins M, Faleiro ML, Barros RJ, Veríssimo AR, Costa MC (2009) Biological sulphate reduction using food industry wastes as carbon sources. Biodegradation 20(4):559–567Google Scholar
  37. Mayes WM, Davis J, Silva V, Jarvis AP (2011) Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing. J Hazard Mater 193:279–287Google Scholar
  38. Mclnerney MJ, Beaty PS (1988) Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can J Microbiol 34(4):487–493Google Scholar
  39. Mechalas BJ, Rittenberg SC (1960) Energy coupling in Desulfovibrio desulfuricans. J Bacteriol 80(4):501–507Google Scholar
  40. Nagpal S, Chuichulcherm S, Livingston A, Peeva L (2000) Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study. Biotechnol Bioeng 70(5):533–543Google Scholar
  41. Neculita CM, Zagury GJ, Bussière B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J Environ Qual 36(1):1–16Google Scholar
  42. Neculita CM, Zagury GJ, Bussière B (2008) Effectiveness of sulfate-reducing passive bioreactors for treating highly contaminated acid mine drainage: I. Effect of hydraulic retention time. Appl Geochem 23(12):3442–3451Google Scholar
  43. Neculita CM, Yim GJ, Lee G, Ji SW, Jung JW, Park HS, Song H (2011) Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors. Chemosphere 83(1):76–82Google Scholar
  44. Nielsen G, Janin A, Coudert L, Blais JF, Mercier G (2017) Performance of sulfate-reducing passive bioreactors for the removal of Cd and Zn from mine drainage in a cold climate. Mine Water Environ.  https://doi.org/10.1007/s10230-017-0465-1 Google Scholar
  45. Pagnanelli F, Viggi CC, Cibati A, Uccelletti D, Toro L, Palleschi C (2012) Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol. J Hazard Mater 199:186–192Google Scholar
  46. Postgate JR (1979) The sulphate-reducing bacteria. Cambridge University Press, CambridgeGoogle Scholar
  47. Price WA, Morin K, Hutt N (1997) Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: part II—recommended procedures for static and kinetic testing. In: Proceedings, 4th international conference on acid rock drainage, Vancouver, BC, Canada, pp 15–30Google Scholar
  48. Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BK (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Evolut Microbiol 45(1):85–89Google Scholar
  49. Robador A, Brüchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 11(7):1692–1703Google Scholar
  50. Rozanova EP, Tourova TP, Kolganova TV, Lysenko AM, Mityushina LL, Yusupov SK, Belyaev SS (2001) Desulfacinum subterraneum sp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology 70(4):466–471Google Scholar
  51. Sahinkaya E, Gunes FM, Ucar D, Kaksonen AH (2011) Sulfidogenic fluidized bed treatment of real acid mine drainage water. Bioresour Technol 102(2):683–689Google Scholar
  52. Scott R (1981) Cheesemaking practice. Applied Science, LondonGoogle Scholar
  53. Sheoran AS, Sheoran V, Choudhary RP (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Min Eng 23(14):1073–1100Google Scholar
  54. Sievert SM, Kuever J (2000) Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evol Microbiol 50(3):1239–1246Google Scholar
  55. Song YC, Piak BC, Shin HS, La SJ (1998) Influence of electron donor and toxic materials on the activity of sulfate reducing bacteria for the treatment of electroplating wastewater. Water Sci Technol 38(4–5):187–194Google Scholar
  56. Song H, Yim GJ, Ji SW, Neculita CM, Hwang T (2012) Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal. J Environ Manag 111:150–158Google Scholar
  57. Szewzyk R, Pfennig N (1990) Competition for ethanol between sulfate-reducing and fermenting bacteria. Arch Microbiol 153(5):470–477Google Scholar
  58. Tsukamoto TK, Miller GC (1999) Methanol as a carbon source for microbiological treatment of acid mine drainage. Water Res 33(6):1365–1370Google Scholar
  59. Waybrant KR, Blowes DW, Ptacek CJ (1998) Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environ Sci Technol 32(13):1972–1979Google Scholar
  60. Waybrant KR, Ptacek CJ, Blowes DW (2002) Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol 36(6):1349–1356Google Scholar
  61. Weijma J (2000) Methanol as electron donor for thermophilic biological sulfate and sulfite reduction. PhD Thesis, Wageningen University, NetherlandsGoogle Scholar
  62. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley Interscience, New YorkGoogle Scholar
  63. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 3352–3378Google Scholar
  64. Yim G, Ji S, Cheong Y, Neculita CM, Song H (2015) The influences of the amount of organic substrate on the performance of pilot-scale passive bioreactors for acid mine drainage treatment. Environ Earth Sci 73(8):4717–4727Google Scholar
  65. Zagury GJ, Neculita C, Bussière B (2007) Passive treatment of acid mine drainage in bioreactors: Short review, applications, and research needs. In: Proceedings, 60th Canadian geotechnical conference and 8th joint CGS/IAH-CNC specialty groundwater conference, Ottawa, ON, Canada, pp 1439–1446Google Scholar
  66. Zaluski MH, Bless DR, Figueroa L, Joyce HO (2006) A modular field bioreactor for acid rock drainage treatment. In: Proceedings, 7th international conference on acid rock drainage (ICARD), pp 2575–2584Google Scholar
  67. Zhao Y, Ren N, Wang A (2008) Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Chemosphere 72(2):233–242Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du QuébecQuebecCanada
  2. 2.Yukon Research CenterWhitehorseCanada

Personalised recommendations