Advertisement

Analysis of Factors Influencing Floor Water Inrush in Coal Mines: A Nonlinear Fuzzy Interval Assessment Method

  • Xintong Wang
  • Shucai Li
  • Zhenhao XuEmail author
  • Peng Lin
  • Jie Hu
  • Wenyang Wang
Technical Article
  • 32 Downloads

Abstract

A nonlinear fuzzy interval method for risk assessment of floor water inrush in coal mines was established, consisting of a multi-index evaluation system and a computational model. The multi-index evaluation system is formed by the destination, criteria, and indicator layers and the risk levels of floor water inrush were divided into five grades. Geological structure, hydrologic condition, the state of the floor aquifuge, and the mining condition were analyzed. Thirteen factors were considered as assessment indices. A computational model is proposed based on nonlinear fuzzy mathematics and the analytic hierarchical process (AHP). Considering the uncertainty of evaluation indices obtained from field exploration, the interval number was adopted to represent variables. Gaussian membership function was used to determine the membership function and membership degree, and the 1–9 AHP scales method was used to calculate the interval number judgment matrixes. The final evaluation levels were obtained by the relative superiority analysis method. The proposed method was successfully applied to the 13301 working face of the Wanglou mine and four additional coal mines in China. The results were highly consistent for these practical situations, which verify the reliability of this study.

Keywords

Risk assessment Fuzzy mathematics Interval number AHP Weight 

Zusammenfassung

Es wurde ein nichtlineares Fuzzy-Intervall-Verfahren zur Risikobewertung von Bodenwassereinbrüchen in Kohlebergwerken etabliert, das aus einem Multi-Index-Bewertungssystem und einem Rechenmodell besteht. Das Multi-Index-Bewertungssystem besteht aus Ziel-, Kriterien- und Indikator¬schichten, wobei die Risikostufen für Bodenwassereinstrom in fünf Stufen unterteilt sind. Die geologische Struktur, der hydrologische Zustand, der Zustand der Bodenaquifuge und der Abbauzustand wurden analysiert. Dreizehn Faktoren wurden als Bewertungsindizes berücksichtigt. Ein Berechnungsmodell wird basierend auf nichtlinearer Fuzzy-Mathematik und dem analytischen hierarchischen Prozess (AHP) vorgeschlagen. Unter Berücksichtigung der Unsicherheit der aus der Feldforschung gewonnenen Bewertungsindizes wurde die Intervallnummer zur Darstellung von Variablen übernommen. Die Gauß‘sche Zugehörigkeitsfunktion wurde verwendet, um die Zugehörigkeitsfunktion und den Zugehörigkeitsgrad zu bestimmen. Die 1−9 AHP-Skalen-Methode wurde verwendet, um die Intervallzahl-Beurteilungsmatrizen zu berechnen. Die endgültigen Bewertungsstufen wurden durch die Methode der relativen Überlegenheit erhalten. Die vorgeschlagene Methode wurde erfolgreich auf der 13301-Arbeitsfläche der Wanglou-Mine und bei vier weiteren Kohlebergwerken in China angewendet. Die für diese praktischen Situationen gewonnenen Ergebnisse waren sehr konsistent, was die Verlässlichkeit dieser Studie bestätigt.

Resumen

Se estableció un método no lineal de conjuntos difusos para la evaluación de riesgos de la irrupción de agua en el piso de las minas de carbón, que consiste en un sistema de evaluación de índices múltiples y un modelo computacional. El sistema de evaluación de índices múltiples está formado por las capas de objetivos, criterios e indicadores y los niveles de riesgo de la entrada de agua en el piso se dividieron en cinco grados. Se analizaron la estructura geológica, la condición hidrológica, el estado del acuífero del piso y la condición de la minería. Trece factores fueron considerados como índices de evaluación. Se propone un modelo computacional basado en las matemáticas difusas no lineales y el proceso jerárquico analítico (AHP). Teniendo en cuenta la incertidumbre de los índices de evaluación obtenidos de la exploración de campo, se adoptó el número del conjunto para representar las variables. Una función gaussiana se usó para determinar la función de pertenencia y el grado de pertenencia y el método de las escalas AHP del 1–9 se usó para calcular las matrices de evaluación de números de conjunto. Los niveles de evaluación final fueron obtenidos por el método de análisis de superioridad relativa. El método propuesto se aplicó con éxito a la superficie de trabajo 13301 de la mina Wanglou y cuatro minas de carbón adicionales en China. Los resultados fueron muy consistentes para estas situaciones prácticas, que verifican la confiabilidad de este estudio.

提出了煤矿底板突水危险性的非线性模糊区间评价方法,包括多指标评价体系和计算模型。 多指标评价体系由目标层、标准层和指示层构成,底板突水风险被为五个等级。分析了地质构造、水文地质条件、底板隔水状态和开采条件,挑选出13个因素作为评价指标。基于非线性模糊数学法和层次分析法(AHP),建立了计算模型。考虑野外勘探所获评价指标的不确定性,用区间数表示变量。利用高斯隶属度函数确定隶属度函数和隶属度,用1—9 AHP标度法计算区间数判断矩阵,根据相对优势分析求出最终评价水平。该方法已成功地应用于王楼矿13301工作面和其它4个中国煤矿。计算结果与实际情况高度一致,验证了研究方法的可靠性。

Notes

Acknowledgements

Much of the work presented in this paper was supported by the National Basic Research Program of China (973 Program, Grant 2013CB036002), the National Natural Science Foundation of China (Grant 51509147), and the promotive research fund for excellent young and middle-aged scientists of Shandong Province (Grant BS2014NJ004). The authors thank the reviewers for their valuable comments and suggestions that helped improve the quality of the paper.

References

  1. Gao L (2014) Analysis on water bursting source and channel at 13301 working face of Wang Lou coal mine. Shandong Coal Sci Technol 8:162–166 (in Chinese) Google Scholar
  2. Li B, Chen YL (2016) Risk assessment of coal floor water inrush from underlying aquifers based on GRA–AHP and its application. Geotech Geol Eng 34(1):143–154CrossRefGoogle Scholar
  3. Li LP, Zhou ZQ, Li SC, Xue YG, Xu ZH, Shi SS (2015) An attribute synthetic evaluation system for risk assessment of floor water inrush in coal mines. Mine Water Environ 34(3):288–294CrossRefGoogle Scholar
  4. Meng ZP, Li GQ, Xie XT (2012) A geological assessment method of floor water inrush risk and its application. Eng Geol 143–144(4):51–60CrossRefGoogle Scholar
  5. Moore R, Lodwick W (2003) Interval analysis and fuzzy set theory. Fuzzy Sets Syst 135(1):5–9CrossRefGoogle Scholar
  6. Qiao W, Li WP, Li T, Chang JY, Wang QQ (2017) Effects of coal mining on shallow water resources in semiarid regions: a case study in the Shennan mining area, Shaanxi, China. Mine Water Environ 36(1):104–113CrossRefGoogle Scholar
  7. Qiao W, Li WP, Li T, Zhang X, Wang YZ, Chen YK (2018) Relevance between hydrochemical and hydrodynamic data in a deep karstified limestone aquifer: a mining area case study. Mine Water Environ 37(2):393–404CrossRefGoogle Scholar
  8. Qiu M, Shi LQ, Teng C, Zhou Y (2017) Assessment of water inrush risk using the fuzzy delphi analytic hierarchy process and grey relational analysis in the Liangzhuang coal mine, China. Mine Water Environ 36(1):39–50CrossRefGoogle Scholar
  9. Saaty TL (1990) How to make a decision: The analytic hierarchy process. Eur J Oper Res 48(1):9–26CrossRefGoogle Scholar
  10. Shi L, Qiu M, Wei W, Xu D, Han J (2014) Water inrush evaluation of coal seam floor by integrating the water inrush coefficient and the information of water abundance. Int J Min Sci Technol 24(5):677–681 (in Chinese) CrossRefGoogle Scholar
  11. Shi LQ, Gao WF, Han J, Tan XP (2017) A nonlinear risk evaluation method for water inrush through the seam floor. Mine Water Environ 36(4):597–605CrossRefGoogle Scholar
  12. Sun K (2014) Evaluation of the water inrush risk of the no.7 coal seam floor in Taoyang coal mine. Shandong U Sci Technol PhD diss (in Chinese) Google Scholar
  13. Sun JM, Wu J (2014) Optimization study on interval number judgment matrix weight vector based on immune evolution algorithm. Int J Secur Appl 8(3):355–362Google Scholar
  14. Wang Y, Yang WF, Li M, Liu X (2012) Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation. Int J Rock Mech Min Sci 52(6):50–55CrossRefGoogle Scholar
  15. Wang X, Wang T, Wang Q, Liu X, Li R, Liu BJ (2017) Evaluation of floor water inrush based on fractal theory and an improved analytic hierarchy process. Mine Water Environ 36(1):87–95CrossRefGoogle Scholar
  16. Wang XT, Li SC, Xu ZH, Hu J, Pan DD, Xue YG (2018) Risk assessment of water inrush in karst tunnels excavation based on normal cloud model. Bull Eng Geol Environ.  https://doi.org/10.1007/s1006401812946 Google Scholar
  17. Wu Q, Liu YZ, Liu DH, Zhou WF (2011) Prediction of floor water inrush: the application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China. Rock Mech Rock Eng 44(5):591–600CrossRefGoogle Scholar
  18. Wu Q, Zhaoc DK, Wang Y, Shen JK, Mu WP, Liu HL (2017) Method for assessing coal-floor water-inrush risk based on the variable-weight model and unascertained measure theory. Hydrogeol J 25(7):2089–2103CrossRefGoogle Scholar
  19. Xiao QH (2014) Study on water treatment technology of complex aquifer in 13301 working face of Wanglou Coal Mine. Shandong Coal Sci Technol 10:155–157 (in Chinese) Google Scholar
  20. Xiao XF, Liu ZS, Jia YY (2015) Prediction and prevention technology of dynamic phenomena in Zhaozhuang mine in Kailua. Coal Mine Support 4:29–32 (in Chinese) Google Scholar
  21. Yang BB, Sui WH, Duan LH (2017) Risk assessment of water inrush in an underground coal mine based on GIS and fuzzy set theory. Mine Water Environ 36(4):617–627CrossRefGoogle Scholar
  22. Yi MS, Zhu WB, Li L, Zhao X, Xu JL (2008) Water inrush mechanism and prevention for fourth panel roof in Bulianta coal mine. J China Coal Soc 33(3):241–245 (in Chinese) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geotechnical and Structural Engineering Research CenterShandong UniversityJinanChina
  2. 2.School of Qilu TransportationShandong UniversityJinanChina
  3. 3.Chinese Academy of Geological SciencesBeijingChina

Personalised recommendations