Advertisement

Impact of Fly Ash Placement in an Abandoned Opencast Mine on Surface and Ground Water Quality: A Case Study

  • Bably PrasadEmail author
  • Deblina Maiti
  • Krishna Kant Kumar Singh
Technical Article
  • 33 Downloads

Abstract

We investigated potential contamination of surface and ground water due to placement of fly ash in an abandoned area of an active opencast mine. Leachates from the fly ash and pond ash did not exceed the effluent discharge limits for inland surface water. Even though iron was one of the major components of the ash, it did not exceed 0.3 mg/L in the leachates. Water quality studies carried out at the coal mine indicated that fly ash disposal there, was not affecting the groundwater, but that the water discharged from the active portion of the mine contained high concentrations of total hardness, total dissolved solids (TDS), sulphate, manganese, and iron, exceeding India’s effluent discharge limits. The nearby Ajay River was not contaminated but the confluence point where the mine water met the Ajay River contained high levels of TDS, sulphate, and manganese. Groundwater in the area surrounding the mine was not significantly impacted. Multivariate statistical analysis was carried out to determine the relationships between the different water quality parameters.

Keywords

Water pollution Leaching characteristics Batch experiment Multivariate statistical analysis 

Der Einfluss von Flugascheablagerungen in einem aufgelassenen Tagebau auf die Oberflächenwasser und Grundwasserqualität: Eine Fallstudie

Zusammenfassung

In dieser Studie wird die mögliche Belastung von Oberflächen- und Grundwasser durch die Einlagerung von Flugasche in einen abgeworfenen Teilbereich eines aktiven Tagebaus untersucht. Die Sickerwassergehalte aus der Flugasche bzw. der Asche aus Absatzbecken übersteigen nicht die Grenzwerte für Abwassereinleitungen in Oberflächengewässer. Obwohl Eisen die Hauptkomponente der Asche darstellt, weisen die Konzentrationen im Sickerwasser Werte unter 0.3 mg/L auf. Studien über die Wasserqualität des Kohlebergbaus zeigen, dass die Ascheablagerungen die Grundwasserqualität nicht beeinflussen. Jedoch weisen Abwässer des aktiven Bergbauteils hohe Konzentrationen an Härtebildnern, Gesamtkonzentrationen (TDS), Sulfat, Mangan und Eisen auf, welche die indischen Abwassergrenzwerte übersteigen. Der nahe gelegene Vorfluter Ajay ist zwar nicht betroffen, jedoch werden am Zufluss des Bergbauabwassers hohe Konzentrationen an TDS, Sulfat und Mangan gemessen. Das Grundwasser in der Umgebung wird nicht signifikant beeinflusst. Durch multivariate Statistikanalysen wird ein Zusammenhang zwischen den unterschiedlichen Wasserqualitätsparametern nachgewiesen.

Impacto de la presencia de cenizas volantes en una mina a cielo abierto abandonada en la calidad del agua superficial y subterránea: un estudio de caso

Resumen

Investigamos la posible contaminación de las aguas superficiales y subterráneas debido a la presencia de cenizas volantes en un área abandonada de una mina a cielo abierto activa. Los lixiviados de la ceniza volante y la ceniza del estanque no excedieron los límites de descarga de efluentes para las aguas superficiales continentales. Aunque el hierro era uno de los principales componentes de la ceniza, no superaba los 0,3 mg / l en los lixiviados. Los estudios de calidad del agua realizados en la mina de carbón indicaron que la eliminación de cenizas volantes no afectaba las aguas subterráneas, pero que el agua descargada de la porción activa de la mina contenía altas concentraciones de dureza total, sólidos totales disueltos (TDS), sulfato, hierro y manganeso, excediendo los límites de vertido de efluentes de la India. El cercano río Ajay no estaba contaminado, pero el punto de confluencia donde el agua de la mina se encontraba con el río Ajay contenía altos niveles de TDS, sulfato y manganeso. El agua subterránea en el área que rodea la mina no fue significativamente afectada. El análisis estadístico multivariante fue llevado a cabo para determinar las relaciones entre los diferentes parámetros de calidad del agua.

废弃露天矿处置粉煤灰对地表和地下水的影响:案例研究

研究了在生产矿井(露天)的废弃区处置粉煤灰对地表和地下水的潜在影响。粉煤灰淋滤液未超过内陆地表水排放标准。虽然铁是粉煤灰的主要成分,但是淋滤液的铁浓度并未超过0.3mg/L。煤矿水质测试表明,粉煤灰处理并未影响地下水质;但是,从煤矿生产区排放出的废水含有较高硬度、溶解总固体(TDS)、硫酸盐、锰和铁,超过了印度废水排放标准。虽然附近Ajay河也未被污染,但矿井水与Ajay河交汇入点存在高浓度TDS、硫酸盐和锰污染。矿井附近地下水未遭受显著影响。多变量统计分析法研究了不同水质参数之间的关系。

Notes

Acknowledgements

The authors thank Dr. Pradeep Kumar Singh, Director, CSIR-Central Institute of Mining and Fuel Research, Dhanbad, for continuous support and motivation during the investigation period. The authors also thank Integrated Coal Mining Limited (ICML), Asansol, and West Bengal for providing the project and funding to carrying out the investigation. Dr. Mobin Ahmed, Senior Scientist of the CSIR-Central Institute of Mining and Fuel Research, Dhanbad is duly acknowledged for his kind help in preparation of Fig. 1.

Supplementary material

10230_2018_577_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 KB)

References

  1. American Society for Testing and Materials D-3987 (1995) Standard test method for shake extraction of solid waste with water. Annu Book ASTM Stand 14–17Google Scholar
  2. Arnold EG, Lemore SC, Andrew DE (1992) Standard methods for examination of water and waste water. American Public Health Assoc (APHA), WashingtonGoogle Scholar
  3. Belkhiri L, Boudoukha A, Mouni L (2010) A multivariate statistical analysis of groundwater chemistry data. Int J Environ Res 5:537–544.  https://doi.org/10.1007/s12517-015-2277-6 Google Scholar
  4. Belviso C, Cavalcante F, Di Gennaro S, Palma A, Ragone P, Fiore S (2015) Mobility of trace elements in fly ash and in zeolitised coal fly ash. Fuel 144:369–379.  https://doi.org/10.1016/j.fuel.2014.12.037 CrossRefGoogle Scholar
  5. Bureau of Indian Standards (1992) Drinking water specifications IS 10500 First revision, 1991. IndiaGoogle Scholar
  6. Das M, Agarwal P, Singh R, Adholeya A (2013) A study of abandoned ash ponds reclaimed through green cover development. Int J Phytoremediation 15(4):320–329.  https://doi.org/10.1080/15226514.2012.702801 CrossRefGoogle Scholar
  7. Dutta BK, Khanra S, Mallick D (2009) Leaching of elements from coal fly ash: assessment of its potential for use in filling abandoned coal mines. Fuel 88(7):1314–1323.  https://doi.org/10.1016/j.fuel.2009.01.005 CrossRefGoogle Scholar
  8. Dwivedi A, Jain MK (2014) Fly ash–waste management and overview: a review. Rec Res Sci Technol 6(1):30–35Google Scholar
  9. Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal 57(4):295–304.  https://doi.org/10.1023/B:GEJO.0000007250.92458.de CrossRefGoogle Scholar
  10. Faisal BMR, Majumder RK, Uddin MJ, Abdul M (2014) Studies on heavy metals in industrial effluent, river and groundwater of Savar industrial area, Bangladesh by principal component analysis. IJGGS 5(1):182–191Google Scholar
  11. Fernandez-Turiel JL, De Carvalho W, Cabanas M, Querol X, Lopez-Soler A (1994) Mobility of heavy metals from coal fly ash. Environ Geol 23:264–270.  https://doi.org/10.1007/BF00766741 CrossRefGoogle Scholar
  12. Goodarzi F, Huggins FE, Sanei H (2008) Assessment of elements, speciation of As, Cr, Ni and emitted Hg for a Canadian power plant burning bituminous coal. Int J Coal Geol 74:1–12.  https://doi.org/10.1016/j.coal.2007.09.002 CrossRefGoogle Scholar
  13. Halim MA, Sumayed SM, Majumder RK, Ahmed N, Rabbani A (2011) Study on groundwater, river water and tannery effluent quality in southwestern Dhaka, Bangladesh: insights from multivariate statistical analysis. JNSST 5(3):125–147Google Scholar
  14. Hartuti S, Fadhillah Hanum F, Takeyama A, Kambara S (2017) Effect of additives on arsenic, boron and selenium leaching from coal fly ash. Minerals 7(6):99.  https://doi.org/10.3390/min7060099 CrossRefGoogle Scholar
  15. Indian Standard IS: 3025 (2009) Methods of sampling and test (physical and chemical) for water used in industry. Bureau of Indian Standard, New DelhiGoogle Scholar
  16. Jankowski J, Ward CR, French D, Groves S (2006) Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel 85:243–256.  https://doi.org/10.1016/j.fuel.2005.05.028 CrossRefGoogle Scholar
  17. Jegadeesan G, Al-Abed SR, Pinto P (2008) Influence of trace metal distribution on its leachability from coal fly ash. Fuel 87:1887–1893.  https://doi.org/10.1016/j.fuel.2007.12.007 CrossRefGoogle Scholar
  18. Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B (2006) Application of chemometrics in river water classification. Water Res 40:744–752.  https://doi.org/10.1016/j.watres.2005.11.042 CrossRefGoogle Scholar
  19. Ledesma-Ruiz R, Pasten-Zapata E, Parra R, Harter T, Mahlknecht J (2015) Investigation of the geochemical evolution of groundwater under agricultural land: a case study in northeastern Mexico. J Hydrol 521:410–423.  https://doi.org/10.1016/j.jhydrol.2014.12.026 CrossRefGoogle Scholar
  20. Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in blackfoot disease in Taiwan. Sci Total Environ 313:77–89.  https://doi.org/10.1016/S0048-9697(02)00683-6 CrossRefGoogle Scholar
  21. Maiti D, Prasad B (2016) Revegetation of fly ash—a review with emphasis on grass-legume plantation and bioaccumulation of metals. AEER 14(2):185–212.  https://doi.org/10.15666/aeer/1402_185212 CrossRefGoogle Scholar
  22. Molla MMA, Saha N, Salam SMA, Rakib-uz-Zaman M (2015) Surface and groundwater quality assessment based on multivariate statistical techniques in the vicinity of Mohanpur, Bangladesh. Int J Environ Health Eng 4(1):18.  https://doi.org/10.4103/2277-9183.157717 CrossRefGoogle Scholar
  23. Mudd GM, Weaver TR, Kodikara J (2004) Environmental geochemistry of leachate from leached brown coal ash. J Environ Eng 130(12):1514–1526.  https://doi.org/10.1061/(ASCE)0733-9372(2004)130:12(1514) CrossRefGoogle Scholar
  24. Neupane G, Donahoe RJ (2013) Leachability of elements in alkaline and acidic coal fly ash samples during batch and column leaching tests. Fuel 104:758–770.  https://doi.org/10.1016/j.fuel.2012.06.013 CrossRefGoogle Scholar
  25. Ogwueleka TC (2014) Assessment of the water quality and identification of pollution sources of Kaduna River in Niger State (Nigeria) using exploratory data analysis. Water Environ J 28(1):31–37.  https://doi.org/10.1111/wej.12004 CrossRefGoogle Scholar
  26. Prasad B, Kumar H (2016) Treatment of acid mine drainage using a fly ash zeolite column. Mine Water Environ 35(4):553–557.  https://doi.org/10.1007/s10230-008-0043-7 CrossRefGoogle Scholar
  27. Prasad B, Mondal KK (2008a) Heavy metals leaching in Indian fly ash. J Environ Sci Eng 50:127–132Google Scholar
  28. Prasad B, Mondal KK (2008b) the impact of filling an abandoned open cast mine with fly ash on ground water quality: a case study. Mine Water Environ 27:40–45.  https://doi.org/10.1007/s10230-008-0043-7 CrossRefGoogle Scholar
  29. Prasad B, Kumari S (2008) Heavy metal pollution index of ground water of an abandoned open cast mine filled with fly ash: a case study. Mine Water Environ 27:265.  https://doi.org/10.1007/s10230-008-0050-8 CrossRefGoogle Scholar
  30. Sandeep P, Sahu SK, Kothai P, Pandit GG (2016) Leaching behavior of selected trace and toxic metals in coal fly ash samples collected from two thermal power plants, India. Bull Environ Contam Toxicol 97(3):425–431.  https://doi.org/10.1007/s00128-016-1864-x CrossRefGoogle Scholar
  31. Shi J, Li Q, Li H, Li S, Zhang J, Shi Y (2017) Eco-design for recycled products: rejuvenating mullite from coal fly ash. Resour Conserv Recycl 124:67–73.  https://doi.org/10.1016/j.resconrec.2017.04.005 CrossRefGoogle Scholar
  32. Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environ Model Softw 22(4):464–475.  https://doi.org/10.1016/j.envsoft.2006.02.001 CrossRefGoogle Scholar
  33. Singh KP, Malik A, Mohan D, Sinha S (2004) Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Res 38(18):3980–3992.  https://doi.org/10.1016/j.watres.2004.06.011 CrossRefGoogle Scholar
  34. Sivakumar DS, Datta M (1996) Assessment of groundwater contamination potential around ash ponds through field sampling: a review. In: Raju VS (ed) Ash ponds and ash disposal systems. Narosa Publishing House, New Delhi, pp 311–325Google Scholar
  35. Sivapullaiah PV, Ali Baig MA (2010) Leachability of trace elements from two stabilized low limen Indian fly ashes. Environ Earth Sci 61:1735–1744.  https://doi.org/10.1007/s12665-010-0487-5 CrossRefGoogle Scholar
  36. Sojka M, Siepak M, Ziola A, Frankowski M, Murat-Blazejewska S, Siepak J (2008) Application of multivariate statistical techniques to evaluation of water quality in the Mała Wełna River (western Poland). Environ Monit Assess 147(1):159–170.  https://doi.org/10.1007/s10661-007-0107-3 CrossRefGoogle Scholar
  37. Sushil S, Batra VS (2006) Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 85(17):2676–2679.  https://doi.org/10.1016/j.fuel.2006.04.031 CrossRefGoogle Scholar
  38. Tiwari MK, Bajpai S, Dewangan UK (2016) Fly ash utilization: a brief review in Indian context. IRJET 3(4):949–956Google Scholar
  39. Ugurlu A (2004) Leaching characteristics of fly ash. Environ Geol 46:890–895.  https://doi.org/10.1007/s00254-004-1100-6 CrossRefGoogle Scholar
  40. Vega M, Pardo R, Barrado E, Deban L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592.  https://doi.org/10.1016/S0043-1354(98)00138-9 CrossRefGoogle Scholar
  41. Wang P, Wang J, Qin Q, Wang H (2017) Life cycle assessment of magnetized fly-ash compound fertilizer production: a case study in China. Renew Sustain Energy Rev 73:706–713.  https://doi.org/10.1016/j.rser.2017.02.005 CrossRefGoogle Scholar
  42. Yang Q, Ma S, Zhang R, Zheng S (2012) Research progress of extracting alumina from high-aluminum fly ash. Multipurp Util Min Resour.  https://doi.org/10.4172/2161-0525.1000427 Google Scholar
  43. Zeng X, Rasmussen TC (2005) Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. J Environ Qual 34(6):1980–1991.  https://doi.org/10.2134/jeq2004.0337 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bably Prasad
    • 1
    Email author
  • Deblina Maiti
    • 1
  • Krishna Kant Kumar Singh
    • 1
  1. 1.Natural Resources and Environment ManagementCSIR-Central Institute of Mining and Fuel ResearchDhanbadIndia

Personalised recommendations