Advertisement

A Set of Methods to Predict Water Inrush from an Ordovician Karst Aquifer: A Case Study from the Chengzhuang Mine, China

  • Hao Li
  • Haibo Bai
  • Jianjun Wu
  • Qingbin Meng
  • Kai Ma
  • Luyuan Wu
  • Fanfei Meng
  • Shaojie Wang
Technical Article
  • 9 Downloads

Abstract

To ensure safe mining of the 3153 working face in the Chengzhuang mine, with its thin aquifuge, we developed a complete set of methods, including transient electromagnetics, drilling, a water injection experiment, and a numerical simulation based on a new constitutive model. Thus, the groundwater distribution, the aquifuge thickness, and the floor damage thickness were obtained successively and the results from each method could be mutually verified. The main results were: (1) The floor damage thickness decreases when the backfill affects the floor, and further thickens as the hanging roof area increases. (2) Under cyclic loading, tension and compression damage zones are connected. The deepest compression damage lags the coal wall, while the point of maximum tensile damage lags the deepest compression damage zone, thus forming an inclined water-conductive zone.

Keywords

Groundwater inrush Floor damage thickness Transient electromagnetic method Water injection experiment Numerical Simulation 

Eine Zusammenstellung von Methoden zur Vorhersage von Wassereinbrüchen aus einem ordovizischen Karstaquifer – eine Fallstudie von der Chengzhuang-Mine, China

Zusammenfassung

Um einen sicheren Abbau vom Abbaustoß 3153 in der Chengzhuang-Mine mit ihrem geringmächtigen Grundwassernichtleiter zu ermöglichen, wurde eine Reihe an Methoden entwickelt, die neben Transienten Elektromagnetik, Bohrungen und Experimenten zur Wasserverpressung auch eine numerische Simulation basierend auf einem neuen konstitutiven Modell umfassten. Auf diese Weise konnte die Grundwasserverteilung, die Mächtigkeit des Grundwassernichtleiters und die Ausdehnung von Sohlschäden sukzessive ermittelt und die Ergebnisse der einzelnen Methoden gegenseitig verifiziert werden. Die Hauptergebnisse waren: (1) Die Ausdehnung von Sohlschäden nimmt ab, wenn der Versatz die Sohle beeinträchtigt und nimmt mit zunehmender Fläche der ungestützten Decke weiter zu. (2) Bei zyklischer Belastung besteht eine Verbindung zwischen durch Spannung oder Druck verursachten Schadenszonen. Die tiefste Druckverformung folgt der Kohlefront, während der Punkt maximalen Zugschadens der tiefsten Druckverformungszone nachfolgt, wodurch eine geneigte wasserleitende Zone gebildet wird.

Un conjunto de métodos para predecir la irrupción de agua de un acuífero kárstico ordovícico: un estudio de caso de la mina Chengzhuang, China

Resumen

Para garantizar la extracción segura de la cara de trabajo 3153 en la mina Chengzhuang, con su delgada acuífuga, desarrollamos un conjunto completo de métodos, que incluyen electromagnetismo transitorio, perforación, un experimento de inyección de agua y una simulación numérica basada en un nuevo modelo constitutivo. Así, la distribución del agua subterránea, el espesor del acuífero y el espesor del daño del piso se obtuvieron sucesivamente y los resultados de cada método se pudieron verificar mutuamente. Los principales resultados fueron: (1) El espesor del daño en el piso disminuye cuando el relleno afecta el piso y se vuelve más grande a medida que aumenta el área del techo colgante. (2) Bajo carga cíclica, las zonas de daño de tensión y compresión están conectadas. El daño de compresión más profundo se retrasa en la pared de carbón, mientras que el punto de máximo daño a la tracción queda retrasado en la zona de daño de compresión más profunda, formando así una zona inclinada de conducción de agua.

预测奥陶系灰岩含水层突水系列方法-以成庄矿(中国)为例

成庄矿(中国)3153工作面煤层底板隔水层较薄,为保障安全产,建立了一套安全防治水方法,包括瞬变电磁、钻探、注水试验和基于新结构模型的数值模拟方法。该套方法可以连续获取地下水分布、隔水层厚度和底板破坏深度,各方法之间相互验证。主要结论:(1) 当充填影响到底板时,底板破坏带厚度减少;当悬顶面积增大时,底板破坏带厚度增大;(2)在周期来压作用下,拉张和压缩破坏区相连。最深压缩破坏落后于煤壁,而最大拉张破坏点又落后于最深压缩破坏区,这样形成了倾斜的导水区。

Notes

Acknowledgements

The authors sincerely thank Mr. Wang Qiang at Southeast University for providing work stations and related data access. This work was supported by the Research Innovation Program for College Graduates of Jiangsu Province (KYLX16_0537) and the National Natural Science Foundation of China (51704280). We also thank the anonymous referees for their careful reading of this article and valuable suggestions.

Supplementary material

10230_2018_572_MOESM1_ESM.eps (1.7 mb)
Location of the Chengzhuang mine (EPS 1759 KB)

References

  1. Cheng YM, Wang JA, Xie GX, Wei WB (2010) Three-dimensional analysis of coal barrier pillars in tailgate area adjacent to the fully mechanized top caving mining face. Int J Rock Mech Min Sci 47:1372–1383CrossRefGoogle Scholar
  2. Feng MM, Mao XB, Zhu QH (2010) Effect of lithologic association of the water-resisting strata in coal seam floor on water insulating. J Min Safe Eng 27:404–409 (in Chinese and abstract in English) Google Scholar
  3. Guo H, Adhikary DP, Craig MS (2009) Simulation of mine water inflow and gas emission during longwall mining. Rock Mech Rock Eng 42:25–51CrossRefGoogle Scholar
  4. Hu XW, Zhang PS, Yan JP, Guo LQ (2014) Improvement of means for interpretation of advanced water detection of tunnels by transient electromagnetic method. Chin J Geotech Eng 36:654–661 (in Chinese and abstract in English) Google Scholar
  5. Lee J, Fenves GL (1998) Plastic-damage model for cyclic loading of concrete structures. J Eng Mech 124:892–900CrossRefGoogle Scholar
  6. Li L, Zhou Z, Li S, Xue Y, Xu Z, Shi S (2015) An attribute synthetic valuation system for risk assessment of floor water inrush in coal mines. Mine Water Environ 34:288–294CrossRefGoogle Scholar
  7. Li Z, Feng G, Zhai C (2016a) Study on “triangle” water-inrush mode of strong water-guide collapse column. J Cent South U 23:2402–2409CrossRefGoogle Scholar
  8. Li HL, Bai HB, Ma D, Xu J, Qian HW, Tian CD (2016b) Experimental study on mining-induced failure depth lagging coal wall secondary deepening rule. J Min Safe Eng 33:318–323 (in Chinese and abstract in English) Google Scholar
  9. Lu YL, Wang LG (2015) Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer. Comp Geo 67:157–171CrossRefGoogle Scholar
  10. Lubliner J, Oliver J, Oller S, Onate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25:299–326CrossRefGoogle Scholar
  11. Ou S, Wang L, Wang P (2013) Numerical analysis of seepage flow characteristic of collapse column under the influence of mining. Int J Min Sci Technol 23:237–244CrossRefGoogle Scholar
  12. Wu Q, Fan S, Zhou W, Liu S (2013) Application of the analytic hierarchy process to assessment of water inrush: a case study for the no. 17 coal seam in the Sanhejian Coal Mine, China. Mine Water Environ 32:229–238CrossRefGoogle Scholar
  13. Yin SX, Zhang J (2005) Impacts of karst paleo-sinkholes on mining and environment in northern China. Environ Geol 48(8):1077–1083CrossRefGoogle Scholar
  14. Zhang HW, Xiao M, Fan GB (2008) Stress-damage-seepage coupling analysis of surrounding rock of large-scale underground caverns. Rock Soil Mech 29:1813–1818 (in Chinese and abstract in English) Google Scholar
  15. Zhang PS, Yan W, Zhang WQ, Shen BT, Wang H (2016) Mechanism of water inrush due to damage of floor and fault activation induced by mining coal seam with fault defects under fluid-solid coupling mode. Chin J Geotechn Eng 38:877–889 (in Chinese and abstract in English) Google Scholar
  16. Zhu WC, Wei CH (2011) Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model. Environ Earth Sci 62:43–54CrossRefGoogle Scholar
  17. Zhu QH, Feng MM, Mao XB (2008a) Numerical analysis of water inrush from working-face floor during mining. J Chin Univ Min Technol 18:159–163CrossRefGoogle Scholar
  18. Zhu SY, Jiang ZQ, Hou HL, Xiao WG, Yao P (2008b) Analytical model and application of stress distribution on mining coal floor. J Chin Univ Min Technol 18:13–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hao Li
    • 1
    • 2
  • Haibo Bai
    • 2
  • Jianjun Wu
    • 3
  • Qingbin Meng
    • 2
  • Kai Ma
    • 2
  • Luyuan Wu
    • 2
  • Fanfei Meng
    • 2
  • Shaojie Wang
    • 4
  1. 1.Key Laboratory of In-situ Property-improving Mining of Ministry of EducationTaiyuan University of TechnologyTaiyuanChina
  2. 2.State Key Laboratory for Geomechanics and Deep Underground EngineeringChina University of Mining and TechnologyXuzhouChina
  3. 3.Shanxi China Coal Huajin Energy Limited Liability CompanyHejinChina
  4. 4.Civil Engineering CollegeTianjin Chengjian UniversityTianjinChina

Personalised recommendations