European Journal of Psychology of Education

, Volume 34, Issue 2, pp 375–395 | Cite as

The impact of instruction and student characteristics on the development of students’ ability to read texts with instructional pictures

  • Britta OerkeEmail author
  • Nele McElvany
  • Annika Ohle-Peters
  • Holger Horz
  • Mark Ullrich


Reading texts with instructional pictures (text-picture integration) is a key component of students’ learning processes in most school subjects, and teachers are tasked with helping their students acquire and refine this skill. The present study focuses on how teachers support their students with this process, and if this support contributes to improved text-picture reading skills. Analyzing self-reports of 56 science and German teachers at secondary schools, we found that the self-reported frequency of using text-picture reading material and the explicit discussion of the instructional picture affected students’ skill improvement positively in the science, but not in the German classes. The self-reported teachers’ efforts to guarantee all students’ understanding of the pictures had no significant effect on students’ skill improvement, however. A Matthew effect for students with higher prior text-picture reading skills was observed. The findings suggest that more research on teachers’ instructional strategies in this important area of daily school activity in most subjects is needed to further understand how the impact of teachers on students’ learning can be improved. Possible research directions are discussed.


Text-picture reading Multimedia material Instruction Science teachers Language teachers Skill improvement 



  1. Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131–152.Google Scholar
  2. Bartholomé, T., & Bromme, R. (2009). Coherence formation when learning from text and picture: what kind of support for whom? Journal of Educational Psychology, 101(2), 282–293.Google Scholar
  3. Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14(1), 5–26.Google Scholar
  4. Clausen, M. (2002). Unterrichtsqualität – Eine Frage der Perspektive [Quality of instruction—a question of perspective]? Münster: Waxmann.Google Scholar
  5. Cohen, L. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  6. Coleman, J. M., McTigue, E. M., & Smolkin, J. M. (2011). Teachers’ use of graphical representations in science teaching. Journal of Science Teacher Education, 22(7), 613–643. Scholar
  7. Dignath-van Ewijk, C., & Van der Werf, G. (2012). What teachers think about self-regulated learning: investigating teacher beliefs and teacher behavior of enhancing students’ self-regulation. Education Research International, 2012, 1–10. Scholar
  8. Flavell, J. H. (1979). Metacognition and cognitive monitoring: a new area of cognitive developmental inquiry. American Psychologist, 34(10), 906–911.Google Scholar
  9. Hannus, M., & Hyäno, J. (1999). Utilization of illustrations during learning of science textbook passages among low- and high-ability children. Contemporary Educational Psychology, 24(2), 95–123.Google Scholar
  10. Hattie, J. (2009). Visible learning. A synthesis of 800 meta-analyses relating to achievement. New York: Routledge.Google Scholar
  11. Hegarty, M., Carpenter, P. A., & Just, M. A. (1991). Diagrams in the comprehension of scientific texts. In R. Barr, M. L. Kamil, P. Mosenthal, & P. D. Pearson (Eds.), Handbook of reading research (Vol. 2, pp. 641–668). New York: Longman.Google Scholar
  12. Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeitstest KFT 4–12 + R [Cognitive ability test (for grades 4 to 12, revision)]. Göttingen: Beltz Test.Google Scholar
  13. Hochpöchler, U., Schnotz, W., Rasch, T., Ullrich, M., Horz, H., McElvany, N., & Baumert, J. (2013). Dynamics of mental model construction from text and graphics. European Journal of Psychology of Education, 28(4), 1105–1126.Google Scholar
  14. Höffler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations—evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27(1), 209–216.Google Scholar
  15. Hox, J. (2002). Multilevel analysis—techniques and applications. Mahwah: Erlbaum.Google Scholar
  16. Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22(6), 392–404.Google Scholar
  17. Jamet, E. (2014). An eye-tracking study of cueing effects in multimedia learning. Computers in Human Behavior, 32, 47–53.Google Scholar
  18. Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13(4), 351–371.Google Scholar
  19. Kistner, S., Rakoczy, K., Otto, B., Dignath-van Ewijk, C., Büttner, G., & Klieme, E. (2010). Promotion of self-regulated learning in classrooms: investigating frequency, quality, and consequences for student performance. Metacognition Learning, 5(2), 157–171. Scholar
  20. Klieme, E., Pauli, C., & Reusser, K. (2009). The Pythagoras study: investigating effects of teaching and learning in Swiss and German mathematics classrooms. In T. Janik & T. Seidel (Eds.), The power of video studies in investigating teaching and learning in the classroom (pp. 137–160). Münster: Waxmann.Google Scholar
  21. Koerber, S. (2011). Der Umgang mit visuell-grafischen Repräsentationen im Grundschulalter [Using visuo-graphic representations in elementary school]. Unterrichtswissenschaft, 39, 49–62.Google Scholar
  22. Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.Google Scholar
  23. Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science, 9(5), 178–181.Google Scholar
  24. Kunter, M., Tsai, Y.-M., Klusmann, U., Brunner, M., Krauss, S., & Baumert, J. (2008). Students’ and mathematics teachers’ perceptions of teacher enthusiasm and instruction. Learning and Instruction, 18(5), 468–482.Google Scholar
  25. Kyriakides, L., Christoforou, C., & Charalambous, C. (2013). What matters for student learning outcomes: a meta-analysis of studies exploring factors of effective teaching. Teaching and Teacher Education, 36, 143–152.Google Scholar
  26. Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: tasks, learning and teaching. Review of Educational Research, 60(1), 1–64.Google Scholar
  27. Leopold, C., Doerner, M., Leutner, D., & Dutke, S. (2015). Effects of strategy instructions on learning from text and pictures. Instructional Science, 43(3), 345–364. Scholar
  28. Lipowsky, F. (2006). Auf den Lehrer kommt es an. Empirische Evidenzen für Zusammenhänge zwischen Lehrerkompetenzen, Lehrerhandeln und dem Lernen der Schüler [Teachers matter. Empirical evidences for relations between teacher competencies, teaching and learning of pupils]. In C. Allemann-Ghionda & E. Terhart (Eds.), Kompetenzen und Kompetenzentwicklung von Lehrerinnen und Lehrern: Ausbildung und Beruf. Zeitschrift für Pädagogik, 51. Beiheft (pp. 47–70). Weinheim: Beltz.Google Scholar
  29. Mautone, P. D., & Mayer, R. E. (2007). Cognitive aids for guiding graph comprehension. Journal of Educational Psychology, 99(3), 640–652.Google Scholar
  30. Mayer, R. E. (1997). Multimedia learning: are we asking the right questions? Educational Psychologist, 32(1), 1–19.Google Scholar
  31. Mayer, R. E. (2001). Multimedia learning. New York: Cambridge University Press.Google Scholar
  32. Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31–48). New York: Cambridge University Press.Google Scholar
  33. Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82(4), 715–726.Google Scholar
  34. McElvany, N. & Schroeder, S., Baumert, J., Schnotz, W., Horz, H., & Ullrich, M. (2012). Cognitively demanding learning materials with texts and instructional pictures: Teachers’ diagnostic skills, pedagogical beliefs and motivation. European Journal of Psychology of Education, 27, 403–420.
  35. Oerke, B., McElvany, N., Ohle-Peters, A., Horz, H., & Ullrich, M. (2018). Einstellungen, Motivation und Selbstwirksamkeit von Lehrkräften: Schulformunterschiede und Zusammenhänge mit Unterrichtsverhalten beim Lehren mit Texten und Bildern. [Attitudes, motivation and self-efficacy of teachers: school type-related differences and correlations with teaching behavior when teaching with texts and integrated pictures]. Zeitschrift für Erziehungswissenschaft. Advance online publication.
  36. Ohle, A. & McElvany, N. (2016). Erfassung von Unterrichtsqualität in der Grundschule: Kognitiver Anspruch, Strukturierung und Motivierungsqualität [Measuring teaching quality in primary school: Cognitive demand, structuring and motivating quality]. In N. McElvany, W. Bos, H. G. Holtappels, M. Gebauer & F. Schwabe (Hrsg.), Bedingungen und Effekte guten Unterrichts (Dortmunder Symposium der Empirischen Bildungsforschung, Bd. 1, S. 117–134). Münster, New York, München, Berlin: Waxmann.Google Scholar
  37. Ohle, A., McElvany, N., Oerke, B., Schnotz, W., Wagner, I., Horz, H. et al. (2017). Development and Evaluation of a Competency Model for Teaching Integrative Processing of Texts and Pictures (BiTe). In D. Leutner, J. Fleischer, J. Grünkorn & E. Klieme (Hrsg.), Competence Assessment in Education - Research, Models and Instruments (S. 167–180). Dordrecht: Springer.Google Scholar
  38. Peeck, J. (1993). Increasing picture effects in learning from illustrated texts. Learning & Instruction, 3, 227–238.Google Scholar
  39. Philipp, J. (2008). Förderung des Verstehens von Liniendiagrammen durch interpretierende und konstruierende Lernhandlungen [To what extend do the learning activities interpreting and constructing foster the comprehension of line graphs]. (Doctoral dissertation). Retrieved from (URN: urn:nbn:de:bsz:25-opus-69485).
  40. Plass, J. L., Chun, D., Mayer, R. E., & Leutner, D. (2003). Cognitive load in reading a foreign language text with multimedia aids and the influence of verbal and spatial abilities. Computers in Human Behavior, 19, 211–220.Google Scholar
  41. Praetorius, A.-K., Lenske, G., & Helmke, A. (2012). Observer ratings of instructional quality: do they fulfill what they promise? Learning and Instruction, 22(6), 387–400.Google Scholar
  42. Raudenbush, S. W., Bryk, A. S., & Congdon, R. (2011). HLM 7 for Windows [computer software]. Skokie: Scientific Software International, Inc..Google Scholar
  43. Rigney, D. (2010). The Matthew effect: how advantage begets further advantage. New York: Columbia University Press.Google Scholar
  44. Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 101–120.Google Scholar
  45. Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13(2), 141–156.Google Scholar
  46. Schnotz, W., Horz, H., McElvany, N., Schroeder, S., Ullrich, M., Baumert, J.,… Richter, T. (2010). Das BITE-Projekt: Integrative Verarbeitung von Texten und Bildern in der Sekundarstufe I [The BITE project: integrative processing of texts and pictures in secondary school]. In: E. Klieme, D. Leutner, & M. Kenk (Eds.), Kompetenzmodellierung. Zwischenbilanz des DFG-Schwerpunktprogramms und Perspektiven des Forschungsansatzes. Zeitschrift für Pädagogik, Beiheft 56 (p. 143–153). Weinheim: Beltz.Google Scholar
  47. Schnotz, W., Ludewig, U., Rasch, T., Ullrich, M., Horz, H., McElvany, N., & Baumert, J. (2014). Strategy shifts during learning from texts and pictures. Journal of Educational Psychology, 106(4), 974–989.Google Scholar
  48. Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111–139. Scholar
  49. Schroeder, S., Richter, T., McElvany, N., Hachfeld, A., Baumert, J., Schnotz, W., …, Ullrich, M. (2010). Teachers’ beliefs, instructional behaviors, and students’ engagement in learning from texts with instructional pictures. Learning and Instruction, 21, 403–415.Google Scholar
  50. Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227–237.Google Scholar
  51. Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: implications for instruction. Educational Psychology Review, 14(1), 47–69.Google Scholar
  52. Stanovich, K. E. (1986). Matthew effects in reading: some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360–407.Google Scholar
  53. Stylianidou, F., Ormerod, F., & Ogborn, J. (2002). Analysis of science textbook pictures about energy and pupils’ readings of them. International Journal of Science Education, 24(3), 257–283.Google Scholar
  54. Sweller, J. (1999). Instructional design in technical areas. Camberwell: ACER Press.Google Scholar
  55. Ullrich, M., Schnotz, W., Horz, H., McElvany, N., Schroeder, S., & Baumert, J. (2012). Kognitionspsychologische Aspekte eines Kompetenzmodells zur Bild-Text-Integration. Psychologische Rundschau, 63(1), 11–17.Google Scholar
  56. Vacca, R. T. (2002). From efficient decoders to strategic readers. Educational Leadership, 60(3), 6–11.Google Scholar
  57. Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 69, 129–140.Google Scholar
  58. Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17(4), 285–325.Google Scholar
  59. Wainer, H. (1992). Understanding graphs and tables. Educational Researcher, 21(1), 14–23.Google Scholar
  60. Weiss, I. R., Banilower, E. R., McMahon, K. C., & Smith, P. S. (2001). Report of the 2000 national survey of science and mathematics education. Chapel Hill: Horizon Research, Inc.Google Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Britta Oerke
    • 1
    Email author
  • Nele McElvany
    • 1
  • Annika Ohle-Peters
    • 1
  • Holger Horz
    • 2
  • Mark Ullrich
    • 2
  1. 1.Center for Research on Education and School Development (IFS)TU Dortmund UniversityDortmundGermany
  2. 2.Department of Educational Psychology (Lifelong Learning)Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations