Advertisement

acta ethologica

, Volume 22, Issue 2, pp 113–123 | Cite as

Effects of the neutral household detergent on the behaviour and personality of guppy Poecilia reticulata (Peters, 1859) (Osteichthyes: Poeciliidae)

  • João Victor Saraiva Raimondi Lopes
  • Robert John Young
  • Cristiano Schetini de AzevedoEmail author
Original Paper
  • 20 Downloads

Abstract

Chemical pollution of aquatic environments has been increasing in recent times, causing great damage to the ecosystems and to the fishery sector. Pollutants can negatively alter an animals’ life, and in this investigation, we verify if a neutral household detergent, one of the most common aquatic pollutants, causes changes in the behaviour and personality of guppy (Poecilia reticulata). Thirty milligrams per litre of detergent was added to the water of two aquariums and the behaviour of eight adult guppies were recorded using focal method with instantaneous recording of behaviours every 15 s, for 30 min daily. Results showed that the detergent modified the behaviour and the personality of guppies, making them shier and more inactive. Thus, more efficient disposal techniques should be applied or developed to avoid the pollution of aquatic environments.

Keywords

Anti-predation Ecotoxicology Fishes Freshwater Pollutants 

Notes

Acknowledgments

The authors would like to thank to R. O. and J. F. for their invaluable suggestions to the first draft of this paper. This study was undertaken whilst J. V. S. R. L. was in receipt of a postgraduate scholarship from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Andrade RLB, Andrade LS, Boscolo WR, Soares CM (2005) Comportamento, sobrevivência e desenvolvimento de lebistes, Poecilia reticulata, submetidos a agentes utilizados na profilaxia de doenças. Acta Sci Anim Sci 27(4):523–528.  https://doi.org/10.4025/actascianimsci.v27i4.1183 Google Scholar
  2. Azevedo CS, Young RJ, Rodrigues M (2012) Failure of captive-born greater rheas (Rhea americana, Rheidae, Aves) to discriminate between predator and nonpredator models. Acta Ethol 15:179–185.  https://doi.org/10.1007/s10211-012-0124-2 CrossRefGoogle Scholar
  3. Baerends GP, Brouwer R, Waterbolk HT (1955) Ethological studies on Lebistes reticulatus (Peters), I An analysis of male courtship patterns. Behavior 8:149–334.  https://doi.org/10.1163/156853955X00238 Google Scholar
  4. Barbieri E, Phan VN, Gomes V (2000) Efeito do LAS-C12, dodecil benzeno sulfonato de sódio linear, na taxa metabólica e na capacidade de natação de Cyprinus carpio. Ecotoxiol Environ Restor 3:2Google Scholar
  5. Barbieri E (2005) Efeito do LAS-C12 (dodecil benzeno sulfonato de sódio) sobre alguns parâmetros do comportamento da tainha (Mugil platanus). Atlânt, Rio Grande 27(1):49–57Google Scholar
  6. Begon M, Townsend CR, Harper JL (2007) Ecologia: De indivíduos a ecossistemas, 4th edn. Artmed, Porto AlegreGoogle Scholar
  7. Blumstein DT, Bitton A, Veiga J (2006) How does the presence of predators influence the persistence of antipredator behaviour? J Theor Biol 239:460–468.  https://doi.org/10.1016/j.jtbi.2005.08.011 CrossRefGoogle Scholar
  8. Bremner-Harrison S, Cypher BL (2011) Reintroducing San Joaquin kit fox to vacant or restored lands: identifying optimal source populations and candidate foxes. Technical report. US Bureau of Reclamation, SacramentoGoogle Scholar
  9. Bremner-Harrison S, Prodohl PA, Elwood RW (2004) Behavioural trait assessment as a release criterion boldness predicts early death in a reintroduction programme of captive-bred swift fox (Vulpes velox). Anim Conserv 7:313–320.  https://doi.org/10.1017/S1367943004001490 CrossRefGoogle Scholar
  10. Brodin T, Fick J, Jonsson M, Klaminder J (2013) Dilute concentrations of a psychiatric drug alter behaviour of fish from natural populations. Science 339:814–815.  https://doi.org/10.1126/science.1226850 CrossRefGoogle Scholar
  11. Brown GE (2003) Learning about danger: chemical alarm cues and local risk assessment in prey fishes. Fish Fish 4:227–234.  https://doi.org/10.1046/j.1467-2979.2003.00132.x CrossRefGoogle Scholar
  12. Brown GE, Macnaughton CJ, Elvidge CK, Ramnarine I, Godin JGJ (2009) Provenance and threat-sensitive predator avoidance patterns in wild-caught Trinidadian guppies. Behav Ecol Sociobiol 63:699–706.  https://doi.org/10.1007/s00265-008-0703-4 CrossRefGoogle Scholar
  13. Butcher JN, Mineka S, Hooley JM (2013) Abnormal psychology, 15th edn. Pearson, BostonGoogle Scholar
  14. Carter AJ, Marshall HH, Heinsohn R, Cowlishaw G (2014) Personality predicts the propensity for social learning in a wild primate. PeerJ 2:e283.  https://doi.org/10.7717/peerj.283. CrossRefGoogle Scholar
  15. Chandashive NE (2014) Effects of different concentrations of detergents on dissolved oxygen consumption in fresh water fish Mystus montanus. Int Res J Environ Sci 3:1–5Google Scholar
  16. Day RL, MacDonald T, Brown C, Laland KN, Reader SM (2001) Interactions between shoal size and conformity in guppy social foraging. Anim Behav 62:917–925.  https://doi.org/10.1006/anbe.2001.1820 CrossRefGoogle Scholar
  17. Debecker S, Sanmartin-Villar I, Guinea-Luengo M, Cordero-Rivera A, Stocks R (2016) Integrating the pace-of-life syndrome across species, sexes and individuals: covariation of life history and personality under pesticide exposure. J Appl Anim Ecol 85:726–738.  https://doi.org/10.1111/1365-2656.12499 CrossRefGoogle Scholar
  18. Eknath CN (2013) The seasonal fluctuation of physico-chemical parameters of River Mula Mutha at Pune, India and their impact on fish biodiversity. Res J Anim Vet Fish Sci 1:11–16Google Scholar
  19. Esteves FA (2011) Fundamentos de Limnologia, 3rd edn. Editora Interciência, Rio de JaneiroGoogle Scholar
  20. Gaillard JM, Pontier D, Allaine D, Lebreton JD, Trouvilliez J, Clobert J (1989) An analysis of demographic tactics in birds and mammals. Oikos 56:59–76.  https://doi.org/10.2307/3566088 CrossRefGoogle Scholar
  21. Hebert OL, Lavin LE, Marks JM, Dzieweczynski TL (2014) The effects of 17α-ethinyloestradiol on boldness and its relationship to decision making in male Siamese fighting fish. Anim Behav 87:203–212.  https://doi.org/10.1016/j.anbehav.2013.10.032 CrossRefGoogle Scholar
  22. Jirotkul M (1999) Operational sex ratio influences female preference and male-male competition in guppies. Anim Behav 58:287–294.  https://doi.org/10.1006/anbe.1999.1149 CrossRefGoogle Scholar
  23. Kelley JL, Evans JP, Ramnarine IW, Magurran AE (2003) Back to school: can antipredator behaviour in guppies be enhanced through social learning? Anim Behav 65:655–662.  https://doi.org/10.1006/anbe.2003.2076 CrossRefGoogle Scholar
  24. Kurvers RHJM, Van Oers K, Nolet BA, Jonker RM, Van Wieren SE, Prins HHT, Ydenberg RC (2010) Personality predicts the use of social information. Ecol Lett 13:829–837.  https://doi.org/10.1111/j.1461-0248.2010.01473.x CrossRefGoogle Scholar
  25. Lima SL, Bednekoff PA (1999) Temporal variation in danger drives antipredator behaviour: the predation risk allocation hypothesis. Am Nat 153:649–659.  https://doi.org/10.1086/303202 CrossRefGoogle Scholar
  26. Lopes JVSR (2017) Efeitos do uso do detergente doméstico neutro no comportamento e personalidade do guppy Poecilia reticulata (Peters, 1859) (Osteichthyes: Poeciliidae). Dissertation, Universidade Federal de Ouro Preto.Google Scholar
  27. Loftus S, Borcherding J (2017) Does social context affect boldness in juveniles? Curr Zool 63:639–645.  https://doi.org/10.1093/cz/zow115 Google Scholar
  28. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  29. Magurran AE, Seghers BH, Carvalho GR, Shaw PW (1992) Behavioural consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad: evidence for the evolution of anti-predator behaviour in the wild. P R Soc Lond B 248:117–122.  https://doi.org/10.1098/rspb.1992.0050 CrossRefGoogle Scholar
  30. Magurran AE, Seghers BH (1994) Sexual conflict as a consequence of ecology: evidence from guppy, Poecilia reticulata, populations in Trinidad. Proc Biol Sci 255(1342):31–36.  https://doi.org/10.1098/rspb.1994.0005 CrossRefGoogle Scholar
  31. Martin P, Bateson P (2007) Measuring behaviour: an introductory guide, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Mathot KJ, Frankenhuis WE (2018) Models of pace-of-life syndromes (POLS): a systematic review. Behav Ecol Sociobiol 72:41.  https://doi.org/10.1007/s00265-018-2459-9 CrossRefGoogle Scholar
  33. Maya E, Marañón S (1998) Efecto del pH sobre la proporción de sexos, el crecimiento y la sobrevivencia del guppy Poecilia reticulata Peters (1859). Hidrobiologica 8:125–132Google Scholar
  34. McPhee ME (2003) Generations in captivity increases behavioural variance: considerations for captive breeding and reintroduction programs. Biol Conserv 115:71–77.  https://doi.org/10.1016/S0006-3207(03)00095-8 CrossRefGoogle Scholar
  35. McWilliams P, Payne G (2002) Bioaccumulation potential of surfactants: a review. Spec Publ R Soc Chem 280:44–55Google Scholar
  36. Monteiro AB (2013) Biogeografia Evolutiva: A seleção sexual e o índice de predação como fatores evolutivos do Lebistes (Poecilia reticulata) em comunidades íctias. Dissertation, Universidade Estadual Paulista Júlio de Mesquita FilhoGoogle Scholar
  37. Morgado MV, Pires A, Pinto JR (2000) Auto-eficácia na criança asmática. Psicol Saud Doen 1:121–128Google Scholar
  38. Penteado JCP, Seoud OAE, Carvalho LRF (2006) Alquibenzeno sulfonato linear: uma abordagem ambiental e analítica. Quim Nova 29:1038–1046.  https://doi.org/10.1590/S0100-40422006000500025 CrossRefGoogle Scholar
  39. Perveen A, Zaidi SS (2018) Effects of water pollution on human health: a review. World J Pharm Pharm Sci 7:503–509Google Scholar
  40. Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio P-O (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans R Soc B 365:4051–4063.  https://doi.org/10.1098/rsrb.2010.0208 CrossRefGoogle Scholar
  41. Reichmuth JM, Roudez R, Glover T, Weis JS (2009) Differences in prey capture behavior in populations of blue crab (Callinectes sapidus Rathbun) from contaminated and clean estuaries in New Jersey. Estuaries and Coasts 32:298–308Google Scholar
  42. Reznick DN, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359.  https://doi.org/10.1038/346357a0 CrossRefGoogle Scholar
  43. Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468.  https://doi.org/10.1016/S0169-5347(02)02578-8 CrossRefGoogle Scholar
  44. Saaristo M, McLennan A, Johnstone CP, Clarke BO, Wong BBM (2017) Impacts of the antidepressant fluoxetine on the anti-predator behaviours of wild guppies (Poecilia reticulata). Aquat Toxicol 183:38–45.  https://doi.org/10.1016/j.aquatox.2016.12.007 CrossRefGoogle Scholar
  45. Smith BR, Blumstein DT (2013) Animal personality and conservation biology: the importance of behavioural diversity. In: Carere C, Maestripieri D (eds) Animal personalities: behaviour, physiology and evolution. The University of Chicago Press, Chicago, pp 381–413.  https://doi.org/10.7208/chicago/9780226922065.003.0014 Google Scholar
  46. Swaney WT, Cabrera-Álvarez MJ, Reader SM (2015) Behavioural responses of feral and domestic guppies (Poecilia reticulata) to predators and their cues. Behav Process 118:42–46.  https://doi.org/10.1016/j.beproc.2015.05.010 CrossRefGoogle Scholar
  47. Venzon M, Pallini A, Janssen A (2001) Interactions mediated by predators in arthropod food webs. Neotrop Entomol 30(1):1–9.  https://doi.org/10.1590/S1519-566X2001000100002 CrossRefGoogle Scholar
  48. Viran R, Erkoç FU, Polat H, Koçak O (2003) Investigation of acute toxicity of deltamethrin on guppies (Poecilia reticulata). Ecotoxicol Environ Saf 55:82–85.  https://doi.org/10.1016/S0045-6535(03)00033-X CrossRefGoogle Scholar
  49. Volkova K, Reyhanian N, Kot-Wasik A, Olsén H, Porsch-Hällström I, Hallgren S (2012) Brain circuit imprints of developmental 17α-ethinylestradiol exposure in guppies (Poecilia reticulata): persistent effects on anxiety but not on reproductive behaviour. Gen Comp Endocrinol 178:282–290.  https://doi.org/10.1016/j.ygcen.2012.05.010 CrossRefGoogle Scholar
  50. Weis JS, Weis P (1998) Effects of exposure to lead on behaviour of mummichog (Fundulus heteroclitus L.) larvae. J Exp Mar Biol Ecol 222:1–10.  https://doi.org/10.1016/S0022-0981(97)00134-2 CrossRefGoogle Scholar
  51. Wolf M, Weissing FJ (2012) Animal personalities: consequences for ecology and evolution. Trends Ecol Evol 27:452–461.  https://doi.org/10.1016/j.tree.2012.05.001 CrossRefGoogle Scholar
  52. Wolff LL, Donatti L (2016) Estudo do comportamento do peixe de água doce Phalloceros harpagos (Cyprinodontiformes: Poeciliidae) submetido à alteração artificial do pH. Lumin 18(1):10–21Google Scholar
  53. Yilmaz M, Gül A, Erbaşl K (2004) Acute toxicity of alpha-cypermethrin to guppy (Poecilia reticulata, Pallas, 1859). Chemosphere 56:381–385.  https://doi.org/10.1016/j.chemosphere.2004.02.034 CrossRefGoogle Scholar
  54. Yuan CL, Xu ZZ, Fan MX, Liu HY, Xie YH, Zhu T (2014) Study on characteristics and harm of surfactants. J Chem Pharm Res 6:2233–2237Google Scholar
  55. Zar JH (2010) Biostatistical analysis, 5th edn. Pearson, EdinburghGoogle Scholar
  56. Zhang Y, Ma J, Zhoua S, Ma F (2015) Concentration-dependent toxicity effect of SDBS on swimming behaviour of freshwater fishes. Environ Toxicol Pharmacol 40:77–85.  https://doi.org/10.1016/j.etap.2015.05.005 CrossRefGoogle Scholar

Copyright information

© ISPA, CRL 2019

Authors and Affiliations

  1. 1.Departamento de Evolução, Biodiversidade e Meio Ambiente, Instituto de Ciências Exatas e BiológicasUniversidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.Campus Morro do CruzeiroOuro PretoBrazil
  3. 3.University of Salford ManchesterSalfordUK

Personalised recommendations