Advertisement

acta ethologica

, Volume 22, Issue 2, pp 99–104 | Cite as

Role of venom quantity in the feeding behavior of Jaguajir rochae (Scorpiones: Buthidae)

  • Meykson A. SilvaEmail author
  • Nathalia A. Silva
  • André F. A. Lira
  • René D. Martins
Original Paper

Abstract

Animal venom is composed of a complex mixture of protein-rich chemicals. Synthesis of animal venom incurs a high metabolic cost and is a prolonged process; consequently, animals use their venom cautiously and economically. Some studies have shown that venomous animals modulate the amount and/or type of venom used depending on certain factors, such as prey size or the intensity of predation threat. Here, we investigated how the quantity of venom that is available for use by the scorpion Jaguajir rochae interferes with its choice of prey. We used two types of prey of contrasting size (small 200–300-mg and large 600–700-mg cockroaches). The results showed that the amount of venom influences the feeding behavior of this species. Most scorpions without venom exhibited a low interest when large prey was present, but frequently attacked small prey. The scorpions also showed a distinct pattern in the time between venom extraction and the initiation of hunting behavior. In conclusion, J. rochae is able to perceive differences between small and large prey and make decisions regarding venom usage, supporting the “venom optimization hypothesis” (or “venom metering hypothesis”), by minimizing the venom use due to it being an energetically expensive resource.

Keywords

Behavioral plasticity Venom optimization hypothesis Predatory behavior Caatinga Semi-arid 

Notes

Acknowledgements

We thank the Fundação de Amparo a Ciências e Tecnologia de Pernambuco (FACEPE) for granting a scholarship to M.A. Silva. We also thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting a Ph.D. scholarship to A.F.A. Lira.

Compliance with ethical standards

Experiments using invertebrate animals conducted in Brazil do not require approval by Ethics Committees, as established by the Brazilian Council for the Control of Animal Experimentation (CONCEA) (Law 11.794/08, § 3).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdel-Rahman MA, Omran MAA, Abdel-Nabi IM, Ueda H, McVean A (2009) Intraspecific variation in the Egyptian scorpion Scorpio maurus almatus venom collected from different biotopes. Toxicon 53:349–359.  https://doi.org/10.1016/j.toxicon.2008.12.007 CrossRefGoogle Scholar
  2. Alami M, Ouafik L, Céard B, Legros C, Bougis PE, Martin-Euclaire MF (2001) Characterisation of the gene encoding the alpha-toxin Amm V from scorpion Androctonus mauretanicus mauretanicus. Toxicon 39:1579–1585.  https://doi.org/10.1016/S0041-0101(01)00140-4 CrossRefGoogle Scholar
  3. Besson T, Debayle D, Diochot S, Salinas M, Linqueglia E (2016) Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals. Toxicon 118:156–161.  https://doi.org/10.1016/j.toxicon.2016.05.001 CrossRefGoogle Scholar
  4. Bub K, Bowerman RF (1979) Prey capture by the scorpion Hadrurus arizonensis Ewing (Scorpiones, Vaejovidae). J Arachnol 7:243–253Google Scholar
  5. Casper GS (1985) Prey capture and stinging behavior in the emperor scorpion, Pandinus imperator (Koch) (Scorpiones, Scorpionidae). J Arachnol 13:277–283Google Scholar
  6. Cooper AM, Nelsen DR, Hayes WK (2015) The strategic use of venom by spiders. In: Gopalakrishnakone P, Malhotra A (eds) Evolution of venomous animals and their toxins. Toxinology. Springer, Dordrecht, pp 1–18Google Scholar
  7. Currier RB, Calvete JJ, Sanz L, Harrison RA, Rowley PD, Wagstaff SC (2012) Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment. PLoS One 7:e41888.  https://doi.org/10.1371/journal.pone.0041888 CrossRefGoogle Scholar
  8. Cushing BS, Matherne A (1980) Stinger utilization and predation in the scorpion Paruroctonus boreus. Great Basin Nat 40:193–195Google Scholar
  9. Dugon MM, Arthur W (2012) Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). J Insect Physiol 58:874–880.  https://doi.org/10.1016/j.jinsphys.2012.03.014 CrossRefGoogle Scholar
  10. Edmunds MC, Sibly RM (2010) Optimal sting use in the feeding behavior of the scorpion Hadrurus spadix. J Arachnol 38:123–125.  https://doi.org/10.1636/Hi09-38.1 CrossRefGoogle Scholar
  11. Esposito LA, Yamaguti HY, Souza CA, Pinto-Da-Rocha R, Prendini L (2017) Systematic revision of the neotropical club-tailed scorpions, Physoctonus, Rhopalurus, and Troglorhopalurus, revalidation of Heteroctenus, and descriptions of two new genera and three new species (Buthidae: Rhopalurusinae). B Am Mus Nat Hist 415:1–136.  https://doi.org/10.1206/0003-0090-415.1.1 CrossRefGoogle Scholar
  12. Fox GA, Hayes WK, Cooper AM, Nelsen DR (2009) Venom yield and characteristics in the desert hairy scorpion (Hadrurus arizonensis). B Ser Calif Acad Sci 108–108Google Scholar
  13. Gopalakrishnakone P, Cheah J, Gwee MC (1995) Black scorpion (Heterometrus longimanus) as a laboratory animal: maintenance of a colony of scorpion for milking of venom for research, using a restraining device. Lab Anim 29:456–458.  https://doi.org/10.1258/002367795780740050 CrossRefGoogle Scholar
  14. Haight KL, Tschinkel WR (2003) Patterns of venom synthesis and use in the fireant, Solenopsis invicta. Toxicon 42:673–682.  https://doi.org/10.1016/j.toxicon.2003.09.005 CrossRefGoogle Scholar
  15. Hayes WK (2008) The snake venom-metering controversy: levels of analysis, assumptions, and evidence. In: Hayes WK, Beaman KR, Cardwell MD, Bush SP (eds) The Biology of Rattlesnakes. Loma Linda University Press, Loma, pp 191–220Google Scholar
  16. IBM Corp. Released (2015) IBM SPSS Statistics for Windows, Version 23.0. IBM Corp, New YorkGoogle Scholar
  17. Inceoglu B, Lango J, Jing J, Chen L, Doymaz F, Pessah IN, Hammock BD (2003) One scorpion, two venoms: prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proc Natl Acad Sci USA 100:922–927.  https://doi.org/10.1073/pnas.242735499 CrossRefGoogle Scholar
  18. Lira AFA, Santos AB, Silva NA, Martins RD (2017) Threat level influences the use of venom in a scorpion species, Tityus stigmurus (Scorpiones, Buthidae). Acta Ethol 20:291–295.  https://doi.org/10.1007/s10211-017-0274-3 CrossRefGoogle Scholar
  19. Lourenço WR (2002) Scorpions of Brazil. Les Editions de l’If, ParisGoogle Scholar
  20. Machan L (1968) Spectral sensitivity of scorpion eyes and the possible role of shielding pigment effect. J Exp Biol 49:95–105Google Scholar
  21. Malli H, Imboden H, Kuhn-Nentwig L (1998) Quantifying the venom dose of the spider Cupiennius salei using monoclonal antibodies. Toxicon 36:1959–1969.  https://doi.org/10.1016/S0041-0101(98)00120-2 CrossRefGoogle Scholar
  22. McCue MD (2006) Cost of producing venom in three North American pitviper species. Copeia 4:818–825. https://doi.org/10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2Google Scholar
  23. Morgenstern D, King GF (2013) The venom optimization hypothesis revisited. Toxicon 63:120–128.  https://doi.org/10.1016/j.toxicon.2012.11.022 CrossRefGoogle Scholar
  24. Nelsen DR, Kelln W, Hayes WK (2014) Poke but don’t pinch: risk assessment and venom metering in the western black widow spider, Latrodectus hesperus. Anim Behav 89:107–114.  https://doi.org/10.1016/j.anbehav.2013.12.019 CrossRefGoogle Scholar
  25. Nisani Z, Hayes WK (2011) Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment and venom metering. Anim Behav 81:627–633.  https://doi.org/10.1016/j.anbehav.2010.12.010 CrossRefGoogle Scholar
  26. Nisani Z, Hayes WK (2015) Venom-spraying behavior of the scorpion Parabuthus transvaalicus (Arachnida: Buthidae). Behav Proc 115:46–52.  https://doi.org/10.1016/j.beproc.2015.03.002 CrossRefGoogle Scholar
  27. Nisani Z, Dunbar SG, Hayes WK (2007) Cost of venom regeneration in Parabuthus transvaalicus (Arachnida: Buthidae). Comp Biochem Phys A 147:509–513.  https://doi.org/10.1016/j.cbpa.2007.01.027 CrossRefGoogle Scholar
  28. Nisani Z, Boskovic DS, Dunbar SG, Kelln W, Hayes WK (2012) Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity. Toxicon 60:315–323.  https://doi.org/10.1016/j.toxicon.2012.04.343 CrossRefGoogle Scholar
  29. Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evo Sys 40:37–57.  https://doi.org/10.1146/annurev.ecolsys.110308.120327 Google Scholar
  30. Pimenta AMC, Almeida FDM, de Lima ME, Martin-Eauclaire MF, Bougis PE (2003) Individual variability in Tityus serrulatus (Scorpiones, Buthidae) venom elicited by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Sp 17:413–418.  https://doi.org/10.1002/rcm.934 CrossRefGoogle Scholar
  31. Rein JO (1993) Sting use in two species of Parabuthus scorpions (Buthidae). J Arachnol 21:60–63Google Scholar
  32. Rein JO (2003) Prey capture behavior in the east African scorpions Parabuthus leiosama (Ehrenberg, 1828) and P. pallidus Pocock, 1895 (Scorpiones: Buthidae). Euscorpius 6:1–8Google Scholar
  33. Sarmento SMN, Souza AM, Meiado MV, Albuquerque CMR (2008) Notes on the life history traits of Rhopalurus rochai (Scorpiones, Buthidae) under different feeding regimes. J Arachnol 36:476–479.  https://doi.org/10.1636/csh07-122.1 CrossRefGoogle Scholar
  34. Silva NA, Albuquerque CM, Marinho AD, Jorge RJ, Silva AGN, Monteiro HS, Silva TD, Correia MT, Pereira TP, Martins AM, Menezes DB, Ximenes RM, Martins RD (2016) Effects of Tityus stigmurus (Thorell 1876) (Scorpiones: Buthidae) venom in isolated perfused rat kidneys. An Acad Bras Cienc 88:665–675CrossRefGoogle Scholar
  35. Smith MT, Ortega J, Beaupre SJ (2014) Metabolic cost of venom replenishment by Prairie rattlesnakes (Crotalus viridis viridis). Toxicon 86:1–7.  https://doi.org/10.1016/j.toxicon.2014.04.013 CrossRefGoogle Scholar
  36. van der Meijden A, Coelho P, Rasko M (2015) Variability in venom volume, flow rate and duration in defensive stings of five scorpion species. Toxicon 100:60–66.  https://doi.org/10.1016/j.toxicon.2015.04.011 CrossRefGoogle Scholar
  37. Wigger E, Kuhn-Nentwig L, Nentwig W (2002) The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40:749–752.  https://doi.org/10.1016/S0041-0101(01)00277-X CrossRefGoogle Scholar
  38. Wullschleger B, Nentwig W (2002) Influence of venom availability on a spider’s prey-choice behaviour. Funct Ecol 16:802–807.  https://doi.org/10.1046/j.1365-2435.2002.00686.x CrossRefGoogle Scholar
  39. Yahel-Niv A, Zlotkin E (1979) Comparative studies on venom obtained from individual scorpions by natural stings. Toxicon 17:435–446.  https://doi.org/10.1016/0041-0101(79)90277-0 CrossRefGoogle Scholar
  40. Yaqoob R, Tahir HM, Arshad M, Naseem S, Ahsan MM (2016) Optimization of the conditions for maximum recovery of venom from scorpions by electrical stimulation. Pak J Zool 48:265–269Google Scholar
  41. Zlotkin E, Shulov AS (1969) A simple device for collecting scorpion venom. Toxicon 7:331–332.  https://doi.org/10.1016/0041-0101(69)90035-X CrossRefGoogle Scholar

Copyright information

© ISPA, CRL 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ciência Animal Tropical, Departamento de Morfologia e Fisiologia AnimalUniversidade Federal Rural de Pernambuco – UFRPERecifeBrazil
  2. 2.Centro Acadêmico de VitóriaUniversidade Federal de Pernambuco – UFPEVitória de Santo AntãoBrazil
  3. 3.Centro de Ciências Biológicas e da SaúdeUniversidade Católica de Pernambuco – UNICAPRecifeBrazil
  4. 4.Programa de Pós-Graduação em Biologia Animal, Departamento de ZoologiaUniversidade Federal de Pernambuco – UFPERecifeBrazil

Personalised recommendations