Advertisement

Living on the edge: thermoregulatory behaviour of South American sea lions, Otaria flavescens, at the northern limit of their Atlantic distribution

  • Carme Tuneu-Corral
  • Diana Szteren
  • Marcelo H. Cassini
Short Communication
  • 41 Downloads

Abstract

Terrestrial reproduction presents a thermoregulatory challenge for marine mammals, especially in a context of global warming. Pinnipeds, especially otariids, differ from other marine mammals in that most reproductive processes occur on land. Rocky rookeries rarely provide thermoregulatory resources (shade, pools and wet sand), so pinnipeds reduce thermal stress through thermoregulatory behaviour such as flipper exposure, flipper movement and maintenance of individual distance. Our objective was to analyse climate correlates of thermoregulatory behaviour of Southern sea lions Otaria flavescens in a colony located at the warmest end of its northern distribution on the Atlantic coast of South America. We conducted summer behavioural observations of juveniles/sub-adult (less than 150 kg) and adult (300 kg) males in the Cabo Polonio rookery, Uruguay. Solar radiation and humidity were positively correlated with thermoregulatory behaviour of sea lions, while ambient temperature had a marginal effect and wind speed had no significant effect. There were no statistically significant differences between age classes in thermoregulation activity. These and previous results on thermoregulatory behaviour of pinnipeds open the possibility that pinnipeds can be limited in abundance or distribution if climate change alters solar radiation in terrestrial rookeries during the breeding season.

Keywords

Sea lions Southwestern Atlantic Ocean Global warming Thermoregulation 

Notes

Acknowledgements

We thank Gonzalo Picasso, Director of Cabo Polonio National Park, for granting us all permissions for working and collecting the necessary data in the natural reserve. We also thank the rangers group and lighthouse keepers group of the park for the excellent treatment received.

Compliance with ethical standards

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bartholomew GA, Wilke F (1956) Body temperature in the northern fur seal, Callorhinus ursinus. J Mammal 37:27–337CrossRefGoogle Scholar
  2. Beentjes MP (2006) Behavioral thermoregulation of the New Zealand sea lion (Phocarctos hookeri). Mar Mamm Sci 22:311–325.  https://doi.org/10.1111/j.1748-7692.2006.00022.x CrossRefGoogle Scholar
  3. Bianca W (1976) The significance of meteorology in animal production. Int J Biometeorol 20:139–156.  https://doi.org/10.1007/BF01553047 CrossRefPubMedGoogle Scholar
  4. Bianco J, Vaz-Ferreira R (1993) Comportamiento frente a situaciones térmicas de Otaria flavescens y de Arctocephalus australis en Isla de Lobos, Uruguay. Bol Soc Zool Uruguay. Actas de la V Reunión Iberoamericana de Conservación y Zoología de Vertebrados. Segunda Época 8:96–104Google Scholar
  5. Blackshaw JK, Blackshaw AW (1994) Heat stress in cattle and the effect of shade on production and behaviour: a review. Anim Prod Sci 34:285–295.  https://doi.org/10.1071/EA9940285 CrossRefGoogle Scholar
  6. Campagna C, Le Boeuf BJ (1988) Thermoregulatory behaviour of southern sea lions and its effect on mating strategies. Behaviour 107:72–89.  https://doi.org/10.1163/156853988X00205 CrossRefGoogle Scholar
  7. Castellini M (2017) Thermoregulation. In: Wursig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of marine mammals, Third edn. Academic Press, Elsevier, London, pp 990–994Google Scholar
  8. Dans SL, Crespo EA, Pedraza SN, Koen-Alonso M (2004) Recovery of the South American sea lion (Otaria flavescens) population in northern Patagonia. Can J Fish Aquat Sci 61:1681–1690.  https://doi.org/10.1139/F04-105 CrossRefGoogle Scholar
  9. Franco-Trecu V (2015) Tácticas comportamentales de forrajeo y apareamiento y dinámica poblacional de dos especies de otáridos simpátricas con tendencias poblacionales contrastantes. PhD Thesis, Universidad de la República, MontevideoGoogle Scholar
  10. Franco-Trecu V, Drago M, Baladán C, García M, Crespo EA, Cardona L, Inchausti P (2015) Postharvesting population dynamics of the South American sea lion (Otaria byronia) in the southwestern Atlantic. Mar Mamm Sci 31(3):963–978.  https://doi.org/10.1111/mms.12197 CrossRefGoogle Scholar
  11. Gentry RL (1973) Thermoregulatory behavior of eared seals. Behav 46:73–93CrossRefGoogle Scholar
  12. Gerken M (2010) Relationships between integumental characteristics and thermoregulation in South American camelids. Animal 4:1451–1459.  https://doi.org/10.1017/S1751731109991443 CrossRefPubMedGoogle Scholar
  13. Grandi MF, Dans SL, Crespo EA (2008) Social composition and spatial distribution of colonies in an expanding population of South American sea lions. J Mammal 89:1218–1228.  https://doi.org/10.1644/08-MAMM-A-088.1 CrossRefGoogle Scholar
  14. Kenagy GJ, Nespolo RF, Vásquez RA, Bozinovic F (2002) Daily and seasonal limits of time and temperature to activity of degus. Rev Chil Hist Nat 75:567–581.  https://doi.org/10.4067/S0716-078X2002000300008 CrossRefGoogle Scholar
  15. Norris AL, Houser DS, Crocker DE (2010) Environment and activity affect skin temperature in breeding adult male elephant seals (Mirounga angustirostris). J Exp Biol 213:4205–4212.  https://doi.org/10.1242/jeb.042135 CrossRefPubMedGoogle Scholar
  16. Palma-Cerda F, Di Fiore MM, Sepúlveda M, Duran LR, Raucci F (2012) Ovarian folliculogenesis in the southern sea lion Otaria flavescens. Acta Zool 93:444–452.  https://doi.org/10.1111/j.1463-6395.2011.00519.x CrossRefGoogle Scholar
  17. Pearson LE, Liwanag HEM, Hammill MO, Burns JM (2014) Shifts in thermoregulatory strategy during ontogeny in harp seals (Pagophilus groenlandicus). J Therm Biol 44:93–102.  https://doi.org/10.1016/j.jtherbio.2014.02.001 CrossRefPubMedGoogle Scholar
  18. Reyes LM, Crespo EA, Szapkievich V (1999) Distribution and population size of the southern sea lion (Otaria flavescens) in central and southern Chubut, Patagonia, Argentina. Mar Mamm Sci 15:478–493.  https://doi.org/10.1111/j.1748-7692.1999.tb00814.x CrossRefGoogle Scholar
  19. Riedman ML (1990) The Pinnipeds. Seals, sea lions and walruses. University of California Press, Los AngelesGoogle Scholar
  20. Smith AB (2013) The relative influence of temperature, moisture and their interaction on range limits of mammals over the past century. Glob Ecol Biogeogr 22:334–343.  https://doi.org/10.1111/j.1466-8238.2012.00785.x CrossRefGoogle Scholar
  21. Soutullo A, Clavijo C, Martínez-Lanfranco JA (2013) Especies prioritarias para la conservación en Uruguay. Vertebrados, moluscos continentales y plantas vasculares. SNAP/DINAMA/ MVOTMA y DICYT/ MEC, Montevideo 222 ppGoogle Scholar
  22. Stewart JE (2013) Fine scale determinants of female grey seal (Halichoerus grypus) pupping site and habitat preferences at North Rona, Scotland. Dissertation, Durham University, Durham, U.KGoogle Scholar
  23. Tarasoff FJ, Fisher HD (1970) Anatomy of the hind flippers of two species of seals with reference to thermoregulation. Can J Zool 48:821–829.  https://doi.org/10.1139/z70-144 CrossRefGoogle Scholar
  24. Túnez JI, Cappozzo HL, Cassini MH (2008) Natural and anthropogenic factors associated with the distribution of South American sea lion along the Atlantic coast. Hydrobiologia 598:191–202.  https://doi.org/10.1007/s10750-007-9150-x CrossRefGoogle Scholar
  25. Twiss SD, Wright NC, Dunstone N, Redman P, Moss S, Pomeroy PP (2002) Behavioral evidence of thermal stress from overheating in UK breeding gray seals. Mar Mamm Sci 18:455–468.  https://doi.org/10.1111/j.1748-7692.2002.tb01048.x CrossRefGoogle Scholar
  26. Vaz-Ferreira R, Palerm E (1961) Efectos de los cambios meteorológicos sobre agrupaciones terrestres de Pinnipedos. Contribuciones del Departamento de Oceanografía 19:281–293Google Scholar
  27. Vaz-Ferreira R, Ponce de León A (1984) Estudios sobre Arctocephalus australis (Zimmermann, 1783), Lobo de Dos Pelos Sudamericano, en el Uruguay. Contrib Depto Oceanogr (FHC) 8:1–18Google Scholar
  28. Vilá BL, Cassini MH (1990) Agresividad entre hembras y separación madre-cría en el lobo marino del sur, en Chubut, Argentina. Rev Chil Hist Nat 63:169–176Google Scholar
  29. Werner R, Campagna C (1995) Diving behaviour of lactating southern sea lions (Otaria flavescens) in Patagonia. Can J Zool 73:1975–1982.  https://doi.org/10.1139/z95-232 CrossRefGoogle Scholar
  30. White FN, Odell DK (1971) Thermoregulatory behavior of the northern elephant seal, Mirounga angustirostris. J Mammal 52:758–774.  https://doi.org/10.2307/1378924 CrossRefGoogle Scholar
  31. Whittow GC (1978) Thermoregulatory behavior of the Hawaiian monk seal (Monachus schauinslandi). Pac Sci 32:47–60Google Scholar
  32. Whittow GC (1987) Thermoregulatory adaptations in marine mammals: interacting effects of exercise and body mass. Mar Mamm Sci 3:220–241.  https://doi.org/10.1111/j.1748-7692.1987.tb00165.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and ISPA 2018

Authors and Affiliations

  • Carme Tuneu-Corral
    • 1
  • Diana Szteren
    • 2
  • Marcelo H. Cassini
    • 3
  1. 1.Universitat de BarcelonaBarcelonaSpain
  2. 2.Laboratorio de Zoología Vertebrados, Departamento de Ecología y Evolución, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Laboratorio de biología del Comportamiento (IBYME)Universidad Nacional de LujánBuenos AiresArgentina

Personalised recommendations