Advertisement

Keyword-based private searching on cloud data along with keyword association and dissociation using cuckoo filter

  • Aishwarya Vipul VoraEmail author
  • Saumya Hegde
Regular Contribution
  • 110 Downloads

Abstract

Outsourcing of data is a very common scenario in the present-day world and quite often we need to outsource confidential data whose privacy is of utmost concern. Performing encryption before outsourcing the data is a simple solution to preserve privacy. Preferably a public-key encryption technique is used to encrypt the data. A demerit of encrypting data is that while requesting the data from the cloud we need to have some technique which supports search functionality on encrypted data. Without the searchable encryption technique, the cloud is forced to send the whole database, which is highly inefficient and impractical. To address this problem, we consider the email scenario, in which the sender of the email will encrypt email contents using receiver’s public key; hence, only the receiver can decrypt email contents. We propose a scheme that will have encrypted emails stored on the cloud and have capabilities that support searching through the encrypted database. This enables the cloud to reply to a request with a more precise response without compromising any privacy in terms of email contents and also in terms of access patterns. We provide a solution for the email scenario in which we can tag or associate emails with some keywords, and during retrieval, the email owner can request all the emails associated with a particular keyword. Although attempts are seen in the literature to solve this issue they do not have the flexibility of dissociating keywords from an email. Keyword dissociation is essential to modify the association between keywords and emails to enable better filtering of emails. Our technique also supports the functionality of keyword dissociation. The solution allows single-database private information retrieval writing in an oblivious way with sublinear communication cost. We have theoretically proved the correctness and security of our technique.

Keywords

Database security Search functionality on encrypted data Cuckoo filter Oblivious modification Private information retrieval Public-key encryption 

Mathematics Subject Classification

94A60 68P20 68P25 14G50 

References

  1. 1.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, FOCS ’95, pp. 41–50. IEEE Computer Society, Washington, DC (1995)Google Scholar
  2. 2.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Washington, DC, USA. IEEE Computer Society. (1997) http://dl.acm.org/citation.cfm?id=795663.796363. (ISBN 0-8186-8197-7)
  3. 3.
    Cachin, C., Micali, S., Stadler, M.: Computationally Private Information Retrieval with Polylogarithmic Communication, pp. 402–414. Springer, Berlin (1999).  https://doi.org/10.1007/3-540-48910-X_28. (ISBN 978-3-540-48910-8) zbMATHGoogle Scholar
  4. 4.
    Chang, Y.-C.: Single Database Private Information Retrieval with Logarithmic Communication, pp. 50–61. Springer, Berlin (2004).  https://doi.org/10.1007/978-3-540-27800-9_5. (ISBN 978-3-540-27800-9) zbMATHGoogle Scholar
  5. 5.
    Lipmaa, H.: An oblivious transfer protocol with log-squared communication. Cryptology ePrint Archive, Report 2004/063, (2004) http://eprint.iacr.org/2004/063
  6. 6.
    Ostrovsky, R., Skeith, W.: Private searching on streaming data. In: Proceedings of the 25th Annual International Conference on Advances in Cryptology, CRYPTO’05, pp. 223–240. Springer, Berlin, Heidelberg (2005)  https://doi.org/10.1007/11535218_14. (ISBN 3-540-28114-2, 978-3-540-28114-6)
  7. 7.
    Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith, W.E.: Public Key Encryption That Allows PIR Queries, pp. 50–67. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-74143-5_4. (ISBN 978-3-540-74143-5) zbMATHGoogle Scholar
  8. 8.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search, pp. 506–522. Springer, Berlin (2004).  https://doi.org/10.1007/978-3-540-24676-3_30. (ISBN 978-3-540-24676-3) zbMATHGoogle Scholar
  9. 9.
    Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically better than bloom. In: Proceedings of the 10th ACM International on Conference on Emerging Networking Experiments and Technologies, CoNEXT ’14, pp. 75–88, ACM, New York, NY, USA (2014).  https://doi.org/10.1145/2674005.2674994. (ISBN 978-1-4503-3279-8)
  10. 10.
    Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. J. ACM 45(6), 965–981 (1998).  https://doi.org/10.1145/293347.293350. (ISSN 0004-5411) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS ’06, pp. 79–88, New York, NY, USA. ACM. (2006)  https://doi.org/10.1145/1180405.1180417. (ISBN 1-59593-518-5)
  12. 12.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions, pp. 303–324. Springer, Berlin (2005).  https://doi.org/10.1007/978-3-540-30576-7_17. (ISBN 978-3-540-30576-7) zbMATHGoogle Scholar
  13. 13.
    Ogata, W., Kurosawa, K.: Oblivious keyword search. J. Complex. 20(2), 356–371 (2004).  https://doi.org/10.1016/j.jco.2003.08.023. (ISSN 0885-064X) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003) http://eprint.iacr.org/2003/216
  15. 15.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43, 431–473 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In Proceedings of the 2000 IEEE Symposium on Security and Privacy, SP ’00, p. 44 Washington, DC, USA. IEEE Computer Society. (2000) http://dl.acm.org/citation.cfm?id=882494.884426. (ISBN 0-7695-0665-8)
  17. 17.
    Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote Encrypted Data, pp. 442–455. Springer, Berlin (2005).  https://doi.org/10.1007/11496137_30. (ISBN 978-3-540-31542-1) zbMATHGoogle Scholar
  18. 18.
    Byun, J.W., Rhee, H.S., Park, H.A., Lee, D.H.: Off-Line Keyword Guessing Attacks on Recent Keyword Search Schemes over Encrypted Data, pp. 75–83. Springer, Berlin (2006).  https://doi.org/10.1007/11844662_6. (ISBN 978-3-540-38987-3) Google Scholar
  19. 19.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency properties, relation to anonymous ibe, and extensions. J. Cryptol. 21(3), 350–391 (2008).  https://doi.org/10.1007/s00145-007-9006-6. (ISSN 1432-1378) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search revisited. Cryptology ePrint Archive, Report 2005/191 (2005) http://eprint.iacr.org/2005/191
  21. 21.
    Crescenzo, G.D., Saraswat, V.: Public Key Encryption with Searchable Keywords Based on Jacobi Symbols, pp. 282–296. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77026-8_21. (ISBN 978-3-540-77026-8) zbMATHGoogle Scholar
  22. 22.
    Khader, D.: Public Key Encryption with Keyword Search Based on K-Resilient IBE, pp. 1086–1095. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-74484-9_95. (ISBN 978-3-540-74484-9) Google Scholar
  23. 23.
    Tang, Q., Chen, L.: Public-Key Encryption with Registered Keyword Search, pp. 163–178. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-16441-5_11. (ISBN 978-3-642-16441-5) Google Scholar
  24. 24.
    Liu, Q., Wang, G., Wu, J.: Secure and privacy preserving keyword searching for cloud storage services. J. Netw. Comput. Appl. 35(3), 927–933 (2012).  https://doi.org/10.1016/j.jnca.2011.03.010. (ISSN 1084-8045) CrossRefGoogle Scholar
  25. 25.
    Zhang, R., Imai, H.: Combining public key encryption with keyword search and public key encryption. IEICE Trans. 92–D(5), 888–896 (2009)CrossRefGoogle Scholar
  26. 26.
    Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable public-key encryption scheme with a designated tester. J. Syst. Softw. 83(5), 763–771 (2010).  https://doi.org/10.1016/j.jss.2009.11.726. (ISSN 0164-1212) CrossRefGoogle Scholar
  27. 27.
    Ibraimi, L., Nikova, S., Hartel, P., Jonker, W.: Public-Key Encryption with Delegated Search, pp. 532–549. Springer, Berlin (2011).  https://doi.org/10.1007/978-3-642-21554-4_31. (ISBN 978-3-642-21554-4) zbMATHGoogle Scholar
  28. 28.
    Park, D.J., Kim, K., Lee, P.J.: Public Key Encryption with Conjunctive Field Keyword Search, pp. 73–86. Springer, Berlin (2005).  https://doi.org/10.1007/978-3-540-31815-6_7. (ISBN 978-3-540-31815-6) Google Scholar
  29. 29.
    Park, D.J., Cha, J., Lee, P.J.: Searchable keyword-based encryption. Cryptology ePrint Archive, Report 2005/367 (2005) http://eprint.iacr.org/2005/367
  30. 30.
    Hwang, Y.H., Lee, P.J.: Public Key Encryption with Conjunctive Keyword Search and Its Extension to a Multi-user System, pp. 2–22. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-73489-5_2. (ISBN 978-3-540-73489-5) zbMATHGoogle Scholar
  31. 31.
    Xue, Q., Chuah, M.C.: Cuckoo-filter based privacy-aware search over encrypted cloud data. In: 2015 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp. 60–68 (Dec 2015)  https://doi.org/10.1109/MSN.2015.41
  32. 32.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Proceedings of the 4th Conference on Theory of Cryptography, TCC’07, pp. 535–554. Springer, Berlin (2007) http://dl.acm.org/citation.cfm?id=1760749.1760788. (ISBN 978-3-540-70935-0)
  33. 33.
    Bringer, J., Chabanne, H., Kindarji, B.: Error-tolerant searchable encryption. In: ICC, pp. 1–6. IEEE (2009) http://dblp.uni-trier.de/db/conf/icc/icc2009.html#BringerCK09
  34. 34.
    Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching Keywords with Wildcards on Encrypted Data, pp. 138–153. Springer, Berlin (2010).  https://doi.org/10.1007/978-3-642-15317-4_10. (ISBN 978-3-642-15317-4) zbMATHGoogle Scholar
  35. 35.
    Li, H., Liu, D., Dai, Y., Luan, T.H., Shen, X.S.: Enabling efficient multi-keyword ranked search over encrypted mobile cloud data through blind storage. IEEE Transactions on Emerging Topics in Computing 3(1), 127–138 (2015).  https://doi.org/10.1109/TETC.2014.2371239. (ISSN 2168-6750) CrossRefGoogle Scholar
  36. 36.
    Li, J., Ma, R., Guan, H.: Tees: An efficient search scheme over encrypted data on mobile cloud. IEEE Transactions on Cloud Computing 5(1), 126–139 (2017).  https://doi.org/10.1109/TCC.2015.2398426. (ISSN 2168-7161) CrossRefGoogle Scholar
  37. 37.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions, pp. 205–222. Springer, Berlin (2005).  https://doi.org/10.1007/11535218_13. (ISBN 978-3-540-31870-5) zbMATHGoogle Scholar
  38. 38.
    Boneh, D., Goh, E-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Proceedings of the Second International Conference on Theory of Cryptography, TCC’05, pp. 325–341, Springer, Berlin (2005)  https://doi.org/10.1007/978-3-540-30576-7_18. (ISBN 3-540-24573-1, 978-3-540-24573-5)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations