Anonymous subject identification and privacy information management in video surveillance

  • Ying Luo
  • Sen-ching S. Cheung
  • Riccardo Lazzeretti
  • Tommaso Pignata
  • Mauro Barni
Regular Contribution
  • 216 Downloads

Abstract

The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework.

Keywords

Anonymous subject identification Privacy information management Privacy protection Video surveillance Garbled circuit 

References

  1. 1.
    Avidan, S., Moshe, B.: Blind vision. In: Proceedings of the 9th European Conference on Computer Vision, pp. 1–13 (2006)Google Scholar
  2. 2.
    Barker, E.: Recommendation for Key Management Part 1: General. NIST Special Publication 800–57 (2016). doi: 10.6028/NIST.SP.800-57pt1r4
  3. 3.
    Barni, M., Bianchi, T., Catalano, D., Raimondo, M.D., Labati, R.D., Failla, P., Fiore, D., Lazzeretti, R., Piuri, V., Piva, A., et al.: A privacy-compliant fingerprint recognition system based on homomorphic encryption and fingercode templates. In: 2010 Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), pp. 1–7. IEEE (2010)Google Scholar
  4. 4.
    Barni, M., Droandi, G., Lazzeretti, R.: Privacy protection in biometric-based recognition systems: a marriage between cryptography and signal processing. IEEE Signal Process. Mag. 32(5), 66–76 (2015)CrossRefGoogle Scholar
  5. 5.
    Barni, M., Guajardo, J., Lazzeretti, R.: Privacy preserving evaluation of signal quality with application to ECG analysis. In: 2010 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2010)Google Scholar
  6. 6.
    Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed) Advances in Cryptology—CRYPT0’ 95. CRYPTO 1995. Lecture Notes in Computer Science, vol 963. Springer, Berlin, Heidelberg (1995)Google Scholar
  7. 7.
    Blanton, M., Gasti, P.: Secure and Efficient Protocols for Iris and Fingerprint Identification. Technical Report, Cryptology ePrint Archive, Report 2010/627, 2010. http://eprint.iacr.org (2010)
  8. 8.
    Cavoukian, A., Stoianov, A.: Biometric Encryption: A Positive-Sum Technology that Achieves Strong Authentication. Security and Privacy. Information and Privacy Commissioner, Ontario (2007)Google Scholar
  9. 9.
    Cheung, S.C., Venkatesh, M.V., Paruchuri, J., Zhao, J., Nguyen, T.: Protecting and managing privacy information in video surveillance systems. In: Senior, A. (ed.) Protecting Privacy in Video Surveillance. Springer, Berlin (2009)Google Scholar
  10. 10.
    Chinomi, K., Nitta, N., Ito, Y., Babaguchi, N.: Prisurv: privacy protected video surveillance system using adaptive visual abstraction. In: Satoh, S., Nack, F., Etoh, M. (eds) Advances in Multimedia Modeling. MMM 2008. Lecture Notes in Computer Science, vol 4903. pp. 144–154. Springer, Berlin, Heidelberg (2008). doi: 10.1007/978-3-540-77409-9_14
  11. 11.
    Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 4, 21–30 (2004)CrossRefGoogle Scholar
  12. 12.
    De Marsico, M., Nappi, M., Riccio, D., Wechsler, H.: Mobile iris challenge evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recognit. Lett. 57, 17–23 (2015)CrossRefGoogle Scholar
  13. 13.
    Devore, J.: Probability and Statistics for Engineering and the Science, vol. 704. Brooks/Cole Pub. Co., Monterey, California (1991)Google Scholar
  14. 14.
    Dufaux, F., Ebrahimi, T.: Scrambling for video surveillance with privacy. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06), p. 160 (2006). doi: 10.1109/CVPRW.2006.184
  15. 15.
    Elezovikj, S., Ling, H., Chen, X.: Foreground and scene structure preserved visual privacy protection using depth information. In: 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–4. IEEE (2013)Google Scholar
  16. 16.
    Erkin, Z., Franz,M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds) Privacy Enhancing Technologies. PETS 2009. Lecture Notes in Computer Science, vol 5672, pp. 235–353. Springer, Berlin, Heidelberg (2009)Google Scholar
  17. 17.
    Fidaleo, D.A., Nguyen, H.A., Trivedi, M.: The networked sensor tapestry (nest): a privacy enhanced software architecture for interactive analysis of data in video-sensor networks. In: VSSN ’04: Proceedings of the ACM 2nd International Workshop on Video Surveillance & Sensor Networks, pp. 46–53. ACM Press, New York, NY, USA (2004). doi: 10.1145/1026799.1026809
  18. 18.
    Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP J. Inf. Secur. 2007, 1–10 (2007). doi: 10.1155/2007/13801 CrossRefGoogle Scholar
  19. 19.
    Gentry, C., Gorbunov, S., Halevi, S., Vaikuntanathan, V., Vinayagamurthy, D.: How to compress (reusable) garbled circuits. IACR Cryptology ePrint Archive 2013, 687 (2013)Google Scholar
  20. 20.
    Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 555–564. ACM (2013)Google Scholar
  21. 21.
    Grother, P., Ngan, M.: Face recognition vendor test (frvt) performance of face identification algorithms. NIST Interag. Rep. 8009, 2 (2014)Google Scholar
  22. 22.
    Grother, P., Quinn, G., Matey, J., Ngan, M., Salamon, W., Fiumara, G., Watson, C.: Irex iii performance of iris identification algorithms. Interag. Rep. 7836 (2012). https://www.nist.gov/publications/irex-iii-performance-iris-identification-algorithms
  23. 23.
    Hao, F., Anderson, R., Daugman, J.: Combining cryptography with biometrics effectively. IEEE Trans. Comput. 55(9), 1081–1088 (2006)CrossRefGoogle Scholar
  24. 24.
    Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Constructions. Springer, Berlin (2010)CrossRefMATHGoogle Scholar
  25. 25.
    Kolesnikov, V., Sadeghi, A., Schneider, T.: How to combine homomorphic encryption and garbled circuits. In: Signal Process. Encrypted Domain SPEED 2009 (Electronic Proceedings) pp. 100–121, September 10th, 2009. Lausanne, Switzerland (2009)Google Scholar
  26. 26.
    Kolesnikov, V., Sadeghi, A., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. Cryptology and Network Security pp. 1–20 (2009)Google Scholar
  27. 27.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free xor gates and applications. In: Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir A., Walukiewicz I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5126, pp. 486–498. Springer, Berlin, Heidelberg (2008)Google Scholar
  28. 28.
    Lazzeretti, R.: Privacy preserving processing of biomedical signals with application to remote healthcare systems. Ph.D. thesis, Ph.D. thesis, Ph.D. School of the University of Siena, Information Engineering and Mathematical Science Department (2012)Google Scholar
  29. 29.
    Lazzeretti, R., Barni, M.: Division between encrypted integers by means of garbled circuits. In: The 2011 IEEE International Workshop on Information Forensics and Security (WIFS’11) (2011)Google Scholar
  30. 30.
    Lee, Y., Micheals, R.J., Filliben, J.J., Phillips, P.J.: Vasir: an open-source research platform for advanced iris recognition technologies. J. Res. Natl. Inst. Stand. Technol. 118, 218 (2013)CrossRefGoogle Scholar
  31. 31.
    Lewis, S.M.: The fourth amendment in the hallway: do tenants have a constitutionally protected privacy interest in the locked common areas of their apartment buildings? Mich. Law Rev. 101, 273–310 (2002)CrossRefGoogle Scholar
  32. 32.
    Li, Y., Savvides, M., Chen, T.: Investigating useful and distinguishing features around the eyelash region. In: 2008 37th IEEE Applied Imagery Pattern Recognition Workshop. IEEE (2008)Google Scholar
  33. 33.
    Linnartz, J., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2003. Lecture Notes in Computer Science, vol 2688, pp. 1059–1059. Springer, Berlin, Heidelberg (2003)Google Scholar
  34. 34.
    Lioudakis, G.V., Koutsoloukas, E.A., Dellas, N.L., Tselikas, N., Kapellaki, S., Prezerakos, G.N., Kaklamani, D.I., Venieris, I.S.: A middleware architecture for privacy protection. Comput. Netw. 51(16), 4679–4696 (2007)CrossRefMATHGoogle Scholar
  35. 35.
    Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a generic, customizable, and reusable secure computation architecture. In: IEEE Symposium on Security and Privacy. San Jose, CA (2015)Google Scholar
  36. 36.
    Luo, Y., Cheung, S.C., Pignata, T., Lazzeretti, R., Barni, M.: An efficient protocol for private iris-code matching using garbled circuits. In: IEEE International Conference on Image Processing (ICIP 2012). Orlando, Florida, USA (2012)Google Scholar
  37. 37.
    Luo, Y., Cheung, S.C.S., Ye, S.: Anonymous biometric access control based on homomorphic encryption. In: IEEE International Conference on Multimedia and Expo. Cancun, Mexico (2009)Google Scholar
  38. 38.
    Luo, Y., Sen-ching, S.C.: Privacy information management for video surveillance. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 8712, pp. 871207 (2013). doi: 10.1117/12.2015999
  39. 39.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay—a secure two-party computation system. In: USENIX (2004). http://www.cs.huji.ac.il/project/Fairplay
  40. 40.
    Martin, K., Plataniotis, K.N.: Privacy protected surveillance using secure visual object coding. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1152–1162 (2008)CrossRefGoogle Scholar
  41. 41.
    Masek, L., Kovesi, P.: Matlab source code for a biometric identification system based on iris patterns. Technical Report, The School of Computer Science and Software Engineering, The University of Western Australia (2003)Google Scholar
  42. 42.
    Nakashima, Y., Babaguchi, N., Fan, J.: Automatically protecting privacy in consumer generated videos using intended human object detector. In: Proceedings of the International Conference on Multimedia, pp. 1135–1138. ACM (2010)Google Scholar
  43. 43.
    Nakashima, Y., Babaguchi, N., Fan, J.: Automatic generation of privacy-protected videos using background estimation. In: 2011 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2011)Google Scholar
  44. 44.
    Newton, E.N., Sweeney, L., Main, B.: Preserving privacy by de-identifying face images. IEEE Trans. Knowl. Data Eng. 17(2), 232–243 (2005)CrossRefGoogle Scholar
  45. 45.
    Organisations, C.C.P.S.: Common criteria for information technology security evaluation, part 2: security functional components. Technical Report CCIMB-2012-09-002 (2012)Google Scholar
  46. 46.
    Padilla-López, J.R., Chaaraoui, A.A., Gu, F., Flórez-Revuelta, F.: Visual privacy by context: proposal and evaluation of a level-based visualisation scheme. Sensors 15(6), 12959–12982 (2015)CrossRefGoogle Scholar
  47. 47.
    Paruchuri, J.K., Cheung, S.C.S., Hail, M.W.: Video data hiding for managing privacy information in surveillance systems. EURASIP J. Inf. Secur. 2009, 236139 (2009)CrossRefGoogle Scholar
  48. 48.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  49. 49.
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed) Advances in Cryptology—ASIACRYPT 2009. ASIACRYPT 2009. Lecture Notes in Computer Science, vol 5912, pp. 250–267. Springer, Berlin, Heidelberg (2009)Google Scholar
  50. 50.
    Qureshi, F.Z.: Object-video streams for preserving privacy in video surveillance. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, 2009. AVSS’09, pp. 442–447. IEEE (2009)Google Scholar
  51. 51.
    Rashwan, H.A., Solanas, A., Puig, D.: Martínez-Ballesté, A.: Understanding trust in privacy-aware video surveillance systems. Int. J. Inf. Secur. 15(3), 225–234 (2015)CrossRefGoogle Scholar
  52. 52.
    Sadeghi, A-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face recognition. In: Lee, D., Hong, S. (eds) Information, Security and Cryptology—ICISC 2009. ICISC 2009. Lecture Notes in Computer Science, vol 5984, pp. 229–244. Springer, Berlin, Heidelberg (2010)Google Scholar
  53. 53.
    Saini, M., Atrey, P.K., Mehrotra, S., Kankanhalli, M.: Adaptive transformation for robust privacy protection in video surveillance. Adv. Multimed. 2012, 1–14 (2012). doi: 10.1155/2012/639649 CrossRefGoogle Scholar
  54. 54.
    Sajid, H., Cheung, S.C.S.: Background subtraction for static and moving camera. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4530–4534. IEEE (2015)Google Scholar
  55. 55.
    Schiff, J., Meingast, M., Mulligan, D., Sastry, S., Goldberg, K.: Respectful cameras: Detecting visual markers in real-time to address privacy concerns. In: International Conference on Intelligent Robots and Systems (IROS), pp. 971–978. Springer (2007)Google Scholar
  56. 56.
    Senior, A., Pankanti, S., Hampapur, A., Brown, L.: T, Y.L., Ekin, A.: Blinkering surveillance: enabling video privacy through computer vision. IEEE Secur. Priv. 3, 50–57 (2005)CrossRefGoogle Scholar
  57. 57.
    Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: Tinygarble: highly compressed and scalable sequential garbled circuits. In: IEEE Symposium on Security and Privacy. San Jose, CA (2015)Google Scholar
  58. 58.
    Sundstrom, E., Burt, R.E., Kamp, D.: Privacy at work: architectural correlates of job satisfaction and job performance. Acad. Manag. J. 23(1), 101–117 (1980)CrossRefGoogle Scholar
  59. 59.
    Tan, T., Sun, Z.: Casia-irisv3. Technical Report, Chinese Academy of Sciences Institute of Automation. http://www.cbsr.ia.ac.cn/IrisDatabase.htm (2005)
  60. 60.
    Uhl, A., Pommer, A.: Image and Video Encryption: From Digital Rights Management to Secured Personal Communication, vol. 15. Springer, Berlin (2004)MATHGoogle Scholar
  61. 61.
    Uludag, U., Jain, A.: Securing fingerprint template: fuzzy vault with helper data. In: Proceedings of CVPR Workshop on Privacy Research In Vision (2006)Google Scholar
  62. 62.
    Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.: Biometric cryptosystems: issues and challenges. Proc. IEEE 92(6), 948–960 (2004)CrossRefGoogle Scholar
  63. 63.
    US Department of Health and Human Services: Summary of the HIPAA Privacy Rule. Department of Health and Human Services, Washington, DC (2003)Google Scholar
  64. 64.
    Venkatesh, M.V., Cheung, S.C., Zhao, J.: Efficient object-based video inpainting. Pattern Recog. Lett. (2008). doi: 10.1016/j.patrec.2008.03.011 Google Scholar
  65. 65.
    Wactlar, H., Stevens, S., Ng, T.: Enabling Personal Privacy Protection Preferences in Collaborative Video Observation. NSF Award Abstract 0534625. http://www.nsf.gov/awardsearch/showAward.do?awardNumber=0534625
  66. 66.
    Wada, J., Kaiyama, K., Ikoma, K., Kogane, H.: Monitor camera system and method of displaying picture from monitor camera thereof. Matsushita Electric Industrial Co., Ltd., Kadoma (2001)Google Scholar
  67. 67.
    Wasson, J.C.: FERPA in the age of computer logging: school discretion at the cost of student privacy? North Carol Law Rev 81, 1348–1369 (2003)Google Scholar
  68. 68.
    Wickramasuriya, J., Datt, M., Mehrotra, S., Venkatasubramanian, N.: Privacy protecting data collection in media spaces. In: ACM International Conference on Multimedia. New York, NY (2004)Google Scholar
  69. 69.
    William, S., Lawrie, B.: Computer Security: Principles And Practice, 3rd edn. Pearson Education Inc, Upper Saddle River (2015)Google Scholar
  70. 70.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (1982)Google Scholar
  71. 71.
    Ye, S., Luo, Y., Zhao, J., Cheung, S.: Anonymous Biometric Access Control. EURASIP J. Inf. Secur. 2009, 17 (2009)Google Scholar
  72. 72.
    Yu, X., Babaguchi, N.: Privacy preserving: hiding a face in a face. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision—ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844, pp. 651–661. Springer, Berlin, Heidelberg (2007)Google Scholar
  73. 73.
    Zhao, J., Cheung, S.: Multi-camera surveillance with visual tagging and generic camera placement. In: Proceedings of ACM/IEEE International Conference on Distributed Smart Cameras (2007)Google Scholar
  74. 74.
    Zhao, J., Cheung, S.C., Nguyen, T.: Optimal camera network configurations for visual tagging. IEEE J. Sel. Top. Signal Process. 2(4), 464–479 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer Information Technology and GraphicsPurdue University NorthwestHammondUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of KentuckyLexingtonUSA
  3. 3.Mathematics DepartmentUniversity of PadovaPadovaItaly
  4. 4.Information Engineering DepartmentUniversity of SienaSienaItaly

Personalised recommendations