Advertisement

Decisions in Economics and Finance

, Volume 41, Issue 2, pp 91–118 | Cite as

Some reflections on past and future of nonlinear dynamics in economics and finance

  • Mikhail Anufriev
  • Davide RadiEmail author
  • Fabio Tramontana
Article
  • 113 Downloads

Abstract

This paper offers an overview of the literature on the economic and financial applications of theory of nonlinear dynamics, especially bifurcation theory. After a short introductory discussion of the first nonlinear dynamic models in social sciences and the economic relevance of the zoo of bifurcations and complicated dynamics that such models can generate, we present an overview of the literature on nonlinear dynamic models in the areas of underdevelopment, environmental poverty traps, the management of common goods, industrial organization and financial markets. The review of the literature is enriched by reflections and ideas for future research.

Keywords

Nonlinear systems Bifurcation theory Complex phenomena in economics and finance Models of bounded rationality and information Heterogeneous agents 

Mathematics Subject Classification

C02 D40 G12 L13 O10 O40 Q50 

Notes

Acknowledgements

The authors are very grateful to Gian Italo Bischi, Mauro Sodini and two reviewers for their careful and meticulous reading of the paper. Very special thanks go to the organizers, speakers and participants of the XLI AMASES Annual Meeting in Cagliari (2017). Davide Radi acknowledges financial support from VŠB-TU Ostrava under the SGS Project SP2018/34. Mikhail Anufriev acknowledges financial support from the Australian Research Council through Discovery Project DP140103501.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Accinelli, E., Sanchez-Carrera, E.J.: The evolutionary game of poverty traps. Manch. Sch. 80(4), 381–400 (2012)Google Scholar
  2. Agliari, A., Gardini, L., Puu, T.: Global bifurcations in duopoly when the Cournot point is destabilized via a subcritical Neimark bifurcation. Int. Game Theory Rev. 8(1), 1–20 (2006)Google Scholar
  3. Agliari, A., Commendatore, P., Foroni, I., Kubin, I.: Expectations and industry location: a discrete time dynamical analysis. Decis. Econ. Finance 37(1), 3–26 (2014)Google Scholar
  4. Agliari, A., Naimzada, A.K., Pecora, N.: Nonlinear dynamics of a Cournot duopoly game with differentiated products. Appl. Math. Comput. 281, 1–15 (2016)Google Scholar
  5. Agliari, A., Massaro, D., Pecora, N., Spelta, A.: Inflation targeting, recursive inattentiveness, and heterogeneous beliefs. J. Money Credit Bank. 49(7), 1587–1619 (2017)Google Scholar
  6. Ahmed, E., Agiza, H.N.: Dynamics of a Cournot game with n-competitors. Chaos Solitons Fractals 9(9), 1513–1517 (1998)Google Scholar
  7. Ahmed, E., Agiza, H.N., Hassan, S.Z.: On modifications of Puu’s dynamical duopoly. Chaos Solitons Fractals 11(7), 1025–1028 (2000)Google Scholar
  8. Ahmed, E., Elsadany, A.A., Puu, T.: On Bertrand duopoly game with differentiated goods. Appl. Math. Comput. 251, 169–179 (2015)Google Scholar
  9. Alfarano, S., Milaković, M.: Network structure and N-dependence in agent-based herding models. J. Econ. Dyn. Control 33(1), 78–92 (2009)Google Scholar
  10. Anderson, L.G.: A bioeconomic analysis of marine reserves. Nat. Resour. Model. 15(3), 311–334 (2002)Google Scholar
  11. Anderson, P.W., Arrow, K.J., Pines, D.: The Economy As An Evolving Complex System. Santa Fe Institute Series, CRC press, Taylor & Francis group, ISBN: 9780201156850 (1988)Google Scholar
  12. Angelini, N., Dieci, R., Nardini, F.: Bifurcation analysis of a dynamic duopoly model with heterogeneous costs and behavioural rules. Math. Comput. Simul. 79(10), 3179–3196 (2009)Google Scholar
  13. Antoci, A.: Environmental degradation as engine of undesirable economic growth via self-protection consumption choices. Ecol. Econ. 68(5), 1385–1397 (2009)Google Scholar
  14. Antoci, A., Borghesi, S.: Environmental degradation, self-protection choices and coordination failures in a North–South evolutionary model. J. Econ. Interact. Coord. 5(1), 89–107 (2010)Google Scholar
  15. Antoci, A., Sodini, M.: Indeterminacy, bifurcations and chaos in an overlapping generations model with negative environmental externalities. Chaos Solitons Fractals 42(3), 1439–1450 (2009)Google Scholar
  16. Antoci, A., Dei, R., Galeotti, M.: Financing the adoption of environment preserving technologies via innovative financial instruments: an evolutionary game approach. Nonlinear Anal. Theory Methods Appl. 71(12), e952–e959 (2009)Google Scholar
  17. Antoci, A., Galeotti, M., Radi, D.: Financial tools for the abatement of traffic congestion: a dynamical analysis. Comput. Econ. 38, 389–405 (2011a)Google Scholar
  18. Antoci, A., Galeotti, M., Russu, P.: Poverty trap and global indeterminacy in a growth model with open-access natural resources. J. Econ. Theory 146(2), 569–591 (2011b)Google Scholar
  19. Antoci, A., Borghesi, S., Galeotti, M.: Environmental options and technological innovation: an evolutionary game model. J. Evol. Econ. 23(2), 247–269 (2013)Google Scholar
  20. Antoci, A., Gori, L., Sodini, M.: Nonlinear dynamics and global indeterminacy in an overlapping generations model with environmental resources. Commun. Nonlinear Sci. Numer. Simul. 38, 59–71 (2016)Google Scholar
  21. Anufriev, M., Bottazzi, G.: Market equilibria under procedural rationality. J. Math. Econ. 46(6), 1140–1172 (2010)Google Scholar
  22. Anufriev, M., Kopányi, D.: Oligopoly game: price makers meet price takers. J. Econ. Dyn. Control 91, 84–103 (2018)Google Scholar
  23. Anufriev, M., Tuinstra, J.: The impact of short-selling constraints on financial market stability in a heterogeneous agents model. J. Econ. Dyn. Control 37(8), 1523–1543 (2013)Google Scholar
  24. Anufriev, M., Bottazzi, G., Marsili, M., Pin, P.: Excess covariance and dynamic instability in a multi-asset model. J. Econ. Dyn. Control 36(8), 1142–1161 (2012)Google Scholar
  25. Anufriev, M., Bao, T., Tuinstra, J.: Microfoundations for switching behavior in heterogeneous agent models: an experiment. J. Econ. Behav. Org. 129, 74–99 (2016)Google Scholar
  26. Anufriev, M., Chernulich, A., Tuinstra, J.: A laboratory experiment on the heuristic switching model. J. Econ. Dyn. Control 91, 21–42 (2018)Google Scholar
  27. Apesteguia, J., Huck, S., Oechssler, J.: Imitation-theory and experimental evidence. J. Econ. Theory 136(1), 217–235 (2007)Google Scholar
  28. Arthur, W.B., Durlauf, S.N., Lane, D.: The Economy as an Evolving Complex System II. Santa Fe Institute Studies in the Science of Complexity (1997)Google Scholar
  29. Azariadis, C.: The economics of poverty traps part one: complete market. J. Econ. Growth 1, 449–486 (1996)Google Scholar
  30. Bella, G., Mattana, P.: Global indeterminacy and equilibrium selection in a model with depletion of non-renewable resources. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0218-z
  31. Biancardi, M., Maddalena, L.: Competition and cooperation in the exploitation of the groundwater resource. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0217-0
  32. Biancardi, M., Villani, G.: International environmental agreements with developed and developing countries in a dynamic approach. Nat. Resour. Model. 27(3), 338–359 (2014)Google Scholar
  33. Bischi, G.I., Lamantia, F.: Harvesting dynamics with protected and unprotected areas. J. Econ. Behav. Org. 62(3), 348–370 (2009)Google Scholar
  34. Bischi, G.I., Gallegati, M., Naimzada, A.: Symmetry-breaking bifurcations and representative firm in dynamic duopoly games. Ann. Oper. Res. 89, 252–271 (1999)Google Scholar
  35. Bischi, G.I., Mammana, C., Gardini, L.: Multistability and cyclic attractors in duopoly games. Chaos Solitons Fractals 11(4), 543–564 (2000)Google Scholar
  36. Bischi, G.I., Naimzada, A.K., Sbragia, L.: Oligopoly games with local monopolistic approximation. J. Econ. Behav. Org. 62(3), 371–388 (2007)Google Scholar
  37. Bischi, G.I., Lamantia, F., Sbragia, L.: Competition and cooperation in natural resources exploitation: an evolutionary game approach. In: Carraro, C., Fragnelli, V., (eds.) Game Practice and the Environment. Edwardelgar publishing edition, pp. 187–211 (2004)Google Scholar
  38. Bischi, G.I., Lamantia, F., Radi, D.: Multi-species exploitation with evolutionary switching of harvesting strategies. Nat. Resour. Model. 26(4), 546–571 (2013a)Google Scholar
  39. Bischi, G.I., Lamantia, F., Radi, D.: A prey–predator fishery model with endogenous switching of harvesting strategy. Appl. Math. Comput. 219(20), 10123–10142 (2013b)Google Scholar
  40. Bischi, G.I., Lamantia, F., Radi, D.: An evolutionary Cournot model with limited market knowledge. J. Econ. Behav. Org. 116, 219–238 (2015)Google Scholar
  41. Bischi, G.I., Panchuk, A., Radi, D.: Qualitative Theory of Dynamical Systems. Tools and Applications for Economic Modelling. Springer, Berlin (2016)Google Scholar
  42. Bischi, G.I., Lamantia, F., Radi, D.: Evolutionary oligopoly games with heterogeneous adaptive players. In: Corchón, L.C., Marini, M.A. (eds.) Handbook of Game Theory and Industrial Organization, vol. I. Edward Elgar Publishing, pp. 343–370 (2018).  https://doi.org/10.4337/9781785363283.00019
  43. Blume, L.E., Durlauf, S.N.: The Economy as an Evolving Complex System. III. Current Perspectives and Future Directions. Oxford University Press, Oxford (2005)Google Scholar
  44. Böhm, V., Kaas, L.: Differential savings, factor shares, and endogenous growth cycles. J. Econ. Dyn. Control 24(5–7), 965–980 (2000)Google Scholar
  45. Boswijk, H.P., Hommes, C.H., Manzan, S.: Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control 31(6), 1938–1970 (2007)Google Scholar
  46. Bramoullé, Y., Galeotti, A., Rogers, B.: The Oxford Handbook of the Economics of Networks. Oxford University Press, Oxford (2016)Google Scholar
  47. Breton, M., Sbragia, L., Zaccour, G.: A dynamic model for international environmental agreements. Environ. Resour. Econ. 45(1), 25–48 (2010)Google Scholar
  48. Brianzoni, S., Mammana, C., Michetti, E.: Variable elasticity of substituition in a discrete time Solow-Swan growth model with differential saving. Chaos, Solitons & Fractals 45(1), 98–108 (2012)Google Scholar
  49. Brianzoni, S., Campisi, G., Guerrini, L.: A continuous-time heterogeneous duopoly model with delays. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0227-y
  50. Brock, W.A.: Pathways to randomness in the economy: emergent nonlinearity and chaos in economics and finance. Estudios Económicos 8(1), 3–55 (1993)Google Scholar
  51. Brock, W.A.: Whither nonlinear? J. Econ. Dyn. Control 24, 663–678 (2000)Google Scholar
  52. Brock, W.A., Hommes, C.H.: A rational route to randomness. Econom. J. Econom. Soc. 65(5), 1059–1095 (1997)Google Scholar
  53. Brock, W.A., Hommes, C.H.: Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J. Econ. Dyn. Control 22(8–9), 1235–1274 (1998)Google Scholar
  54. Brock, W.A., Taylor, M.S.: The Green Solow model. J. Econ. Growth 15(2), 127–153 (2010)Google Scholar
  55. Brock, W.A., Dindo, P., Hommes, C.H.: Adaptive rational equilibrium with forward looking agents. Int. J. Econ. Theory 2(3–4), 241–278 (2006)Google Scholar
  56. Camerer, C.F., Ho, T.H., Chong, J.K.: A cognitive hierarchy model of games. Q. J. Econ. 119(3), 861–898 (2004)Google Scholar
  57. Caravaggio, A., Sodini, M.: Nonlinear dynamics in coevolution of economic and environmental systems. Front. Appl. Math. Stat. 4(26), 1–17 (2018)Google Scholar
  58. Cavalli, F., Naimzada, A.: A Cournot duopoly game with heterogeneous players: Nonlinear dynamics of the gradient rule versus local monopolistic approach. Appl. Math. Comput. 249, 382–388 (2014)Google Scholar
  59. Cavalli, F., Naimzada, A.: A multiscale time model with piecewise constant argument for a boundedly rational monopolist. J. Differ. Equ. Appl. 22(10), 1480–1489 (2016)Google Scholar
  60. Cavalli, F., Naimzada, A., Tramontana, F.: Nonlinear dynamics and global analysis of a heterogeneous Cournot duopoly with a local monopolistic approach versus a gradient rule with endogenous reactivity. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 245–262 (2015)Google Scholar
  61. Cavalli, F., Naimzada, A., Sodini, M.: Oligopoly models with different learning and production time scales. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0225-0
  62. Cerboni Baiardi, L., Naimzada, A.: An evolutionary model with best response and imitative rules. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0219-y
  63. Cerboni Baiardi, L., Lamantia, F., Radi, D.: Evolutionary competition between boundedly rational behavioral rules in oligopoly games. Chaos Solitons Fractals 79, 204–225 (2015)Google Scholar
  64. Chernulich, A.: A self-tuning model of adaptive choice. University of Technology Sydney working paper (2018)Google Scholar
  65. Chiarella, C.: The dynamics of speculative behaviour. Ann. Oper. Res. 37(1), 101–123 (1992)Google Scholar
  66. Chiarella, C., He, X.Z.: Asset price and wealth dynamics under heterogeneous expectations. Quant. Finance 1, 509–526 (2001)Google Scholar
  67. Chiarella, C., He, X.Z., Hommes, C.: A dynamic analysis of moving average rules. J. Econ. Dyn. Control 30(9–10), 1729–1753 (2006)Google Scholar
  68. Chiarella, C., Dieci, R., He, X.Z., Li, K.: An evolutionary CAPM under heterogeneous beliefs. Ann. Finance 9(2), 185–215 (2013)Google Scholar
  69. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd edn. Wiley, New York (1990)Google Scholar
  70. Commendatore, P., Kubin, I., Petraglia, C., Sushko, I.: Regional integration, international liberalisation and the dynamics of industrial agglomeration. J. Econ. Dyn. Control 48, 265–287 (2014)Google Scholar
  71. Crespi, G.P., Radi, D., Rocca, M.: Robust games: theory and application to a Cournot duopoly model. Decis. Econ. Finance 40(1–2), 177–198 (2017)Google Scholar
  72. Dana, R.A., Montrucchio, L.: Dynamic complexity in duopoly games. J. Econ. Theory 40(1), 40–56 (1986)Google Scholar
  73. Day, R.H.: Irregular growth cycles. Am. Econ. Rev. 72(3), 406–414 (1982)Google Scholar
  74. Day, R.H., Huang, W.: Bulls, bears and market sheep. J. Econ. Behav. Org. 14(3), 299–329 (1990)Google Scholar
  75. De Grauwe, P.: Animal spirits and monetary policy. Econ. Theory 47(2–3), 423–457 (2011)Google Scholar
  76. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2008)Google Scholar
  77. Diba, B.T., Grossman, H.I.: On the inception of rational bubbles. Q. J. Econ. 102(3), 697–700 (1987)Google Scholar
  78. Dieci R, He X-Z: Heterogeneous Agent Models in Finance. In: Hommes, C., LeBaron, B. (eds.) Handbook of Computational Economics. chap. 5. Elsevier, vol. 4, pp. 257–328 (2018).  https://doi.org/10.1016/bs.hescom.2018.03.002
  79. Dieci, R., Schmitt, N.,Westerhoff, F.: Steady states, stability and bifurcations in multi-asset market models. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0214-3
  80. Diks, C., Hommes, C., Panchenk, V., van der Weide, R.: E&f chaos: a user friendly software package for nonlinear economic dynamics. Comput. Econ. 32(1–2), 221–244 (2008)Google Scholar
  81. Diks, C., Hommes, C., Zeppini, P.: More memory under evolutionary learning may lead to chaos. Phys. A: Stat. Mech. Its Appl. 392(4), 808–812 (2013)Google Scholar
  82. Droste, E., Hommes, C.H., Tuinstra, J.: Endogenous fluctuations under evolutionary pressure in Cournot competition. Games Econ. Behav. 40(2), 232–269 (2002)Google Scholar
  83. Dubiel-Teleszyński, T.: Complex dynamics in a Bertrand duopoly game with heterogeneous players. Cent. Eur. J. Econ. Model. Econom. 2(2), 95–116 (2010)Google Scholar
  84. Dubiel-Teleszyński, T.: Nonlinear dynamics in a heterogeneous duopoly game with adjusting players and diseconomies of scale. Commun. Nonlinear Sci. Numer. Simul. 16(1), 296–308 (2011)Google Scholar
  85. Esteban, E., Albiac, J.: Groundwater and ecosystems damages: questioning the Gisser–Sánchez effect. Ecol. Econ. 70(11), 2062–2069 (2011)Google Scholar
  86. Fanti, L., Gori, L., Mammana, C., Michetti, E.: The dynamics of a Bertrand duopoly with differentiated products: synchronization, intermittency and global dynamics. Chaos Solitons Fractals 52, 73–86 (2013)Google Scholar
  87. Fischer, R.D., Mirman, L.J.: The compleat fish wars: biological and dynamic interactions. J. Environ. Econ. Manag. 30(1), 34–42 (1996)Google Scholar
  88. Fisher, F.M.: The stability of the Cournot oligopoly solution: the effects of speeds of adjustment and increasing marginal costs. Rev. Econ. Stud. 28(2), 125–135 (1961)Google Scholar
  89. Franke, R., Westerhoff, F.: Structural stochastic volatility in asset pricing dynamics: estimation and model contest. J. Econ. Dyn. Control 36(8), 1193–1211 (2012)Google Scholar
  90. Franke, R., Westerhoff, F.: Why a simple herding model may generate the stylized facts of daily returns: explanation and estimation. J. Econ. Interact. Coord. 11(1), 1–34 (2016)Google Scholar
  91. Friedman, J.W.: Oligopoly and the Theory of Games. North-Holland, Amsterdam (1977)Google Scholar
  92. Fullerton, D., Kim, S.R.: Environmental investment and policy with distortionary taxes, and endogenous growth. J. Environ. Econ. Manag. 56(2), 141–154 (2008)Google Scholar
  93. Furth, D.: Stability and instability in oligopoly. J. Econ. Theory 40(2), 197–228 (1986)Google Scholar
  94. Galí, J.: Monopolistic competition, endogenous markups, and growth. Eur. Econ. Rev. 38(3–4), 748–756 (1994)Google Scholar
  95. Gardini, L., Avrutin, V., Schanz, M., Sushko, I., Tramontana, F.: Continuous and discontinuous piecewise-smooth one-dimensional maps: Invariant sets and bifurcation structures, World Scientific (2019).  https://doi.org/10.1142/8285
  96. Gaunersdorfer, A., Hommes, C.: A Nonlinear Structural Model for Volatility Clustering, Long Memory in Economics Edition, pp. 265–288. Springer, Berlin (2007)Google Scholar
  97. Gori, L., Guerrini, L.,Sodini, M.: Different modelling approaches for time lags in a monopoly. In: Essays in Economic Dynamics: Theory, Simulation Analysis, and Methodological Study, pp. 81–98. Springer (2016)Google Scholar
  98. Graham, B.S., Temple, J.R.W.: Rich nations, poor nations: how much can multiple equilibria explain? J. Econ. Growth 11(1), 5–41 (2006)Google Scholar
  99. Grandmont, J.M., Laroque, G.: Stability of cycles and expectations. J. Econ. Theory 40(1), 138–151 (1986)Google Scholar
  100. Grassetti, F., Mammana, C., Micchetti, E.: Poverty trap, boom and bust periods and growth. A nonlinear model for non-developed and developing countries. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0211-6
  101. Guerrini, L., Matsumoto, A., Szidarovszky, F.: A heterogeneous agent model of asset price dynamics with two time delays. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0223-2
  102. Haldane, A.G.: Rethinking the financial network. Technical report, Bank of England (2009)Google Scholar
  103. Hamilton, W.D.: Selfish and spiteful behaviour in an evolutionary model. Nature 228, 1218–1220 (1970)Google Scholar
  104. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968)Google Scholar
  105. He, X.Z., Li, K.: Heterogeneous beliefs and adaptive behaviour in a continuous-time asset price model. J. Econ. Dyn. Control 36(7), 973–987 (2012)Google Scholar
  106. He, X.Z., Westerhoff, F.H.: Commodity markets, price limiters and speculative price dynamics. J. Econ. Dyn. Control 29(9), 1577–1596 (2005)Google Scholar
  107. He, X.Z., Zheng, H.: Trading heterogeneity under information uncertainty. J. Econ. Behav. Org. 130, 64–80 (2016)Google Scholar
  108. Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Am. Math. Soc. (New Ser.) 40(4), 479–519 (2003)Google Scholar
  109. Hommes, C., Zeppini, P.: Innovate or imitate? Behavioural technological change. J. Econ. Dyn. Control 48, 308–324 (2014)Google Scholar
  110. Hommes, C.H.: Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems. Cambridge University Press, Cambridge (2013)Google Scholar
  111. Hommes, C.H., Kiseleva, T., Kuznetsov, Y., Verbic, M.: Is more memory in evoluionary selection (de)stabilizing? Macroecon. Dyn. 16(3), 335–357 (2012)Google Scholar
  112. Hommes, C.H., Ochea, M.I., Tuinstra, J.: Evolutionary competition between adjustment processes in Cournot oligopoly: instability and complex dynamics. Dyn. Games Appl. 8(4), 822–843 (2018)Google Scholar
  113. John, A., Pecchenino, R.: An overlapping generations model of growth and the environment. Econ. J. 104(427), 1393–1410 (1994)Google Scholar
  114. Kopel, M.: Simple and complex adjustment dynamics in Cournot duopoly models. Chaos Solitons Fractal 7(12), 2031–2048 (1996)Google Scholar
  115. Krugman, P.: History versus expectations. Q. J. Econ. 106(2), 651–667 (1991)Google Scholar
  116. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Berlin (2004)Google Scholar
  117. Lamantia, F., Radi, D.: Exploitation of renewable resources with differentiated technologies: an evolutionary analysis. Math. Comput. Simul. 108, 155–174 (2015)Google Scholar
  118. Lamantia, F., Radi, D.: Evolutionary technology adoption in an oligopoly market with forward-looking firms. Chaos Interdiscip. J. Nonlinear Sci. 28(5), 055,904 (2018).  https://doi.org/10.1063/1.5024245
  119. Lamantia, F., Negriu, A., Tuinstra, J.: Technology choice in an evolutionary oligopoly game. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0215-2
  120. Lux, T.: Herd behaviour, bubbles and crashes. Econ. J. 105(431), 881–896 (1995)Google Scholar
  121. Lux, T., Zwinkels, R.C.J.: Empirical Validation of Agent-Based Models. In: Hommes, C., LeBaron, B. (eds.) Handbook of Computational Economics, Chap. 8, vol. 4. Elsevier, pp. 437–488 (2018).  https://doi.org/10.1016/bs.hescom.2018.02.003
  122. Maccioni, A.F.: Environmental depletion, defensive consumption and negative externalities. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0226-z
  123. Mäler, K.G., Xepapadeas, A., de Zeeuw, A.: The economics of shallow lakes. Environ. Resour. Econ. 26(4), 603–624 (2003)Google Scholar
  124. Matsumoto, A., Szidarovszky, F.: Nonlinear delay monopoly with bounded rationality. Chaos Solitons Fractals 45(4), 507–519 (2012)Google Scholar
  125. Matsumoto, A., Szidarovszky, F.: Discrete and continuous dynamics in nonlinear monopolies. Appl. Math. Comput. 232(1), 632–642 (2014a)Google Scholar
  126. Matsumoto, A., Szidarovszky, F.: Discrete-time delay dynamics of boundedly rational monopoly. Decis. Econ. Finance 37(1), 53–79 (2014b)Google Scholar
  127. Matsumoto, A., Szidarovszky, F.: Learning monopolies with delayed feedback on price expectations. Commun. Nonlinear Sci. Numer. Simul. 28(1–3), 151–165 (2015a)Google Scholar
  128. Matsumoto, A., Szidarovszky, F.: Nonlinear Cournot duopoly with implementation delays. Chaos Solitons Fractals 79, 157–165 (2015b)Google Scholar
  129. Matsuyama, K.: Increasing returns, industrialization, and indeterminacy of equilibrium. Q. J. Econ. 106(2), 617–650 (1991)Google Scholar
  130. Matsuyama, K.: Complementarities and cumulative processes in models of monopolistic competition. J. Econ. Lit. 33(2), 701–729 (1995)Google Scholar
  131. Matsuyama, K.: Credit traps and credit cycles. Am. Econ. Rev. 97(1), 503–516 (2007)Google Scholar
  132. Matsuyama, K., Sushko, I.,Gardini, L.: A piecewise linear model of credit traps and credit cycles: a complete characterization. Decisions Econ Finan (2018).  https://doi.org/10.1007/s10203-018-0220-5
  133. Matějka, F., McKay, A.: Rational inattention to discrete choices: a new foundation for the multinomial logit model. Am. Econ. Rev. 105(1), 272–298 (2015)Google Scholar
  134. McWhinnie, S.F.: The tragedy of the commons in international fisheries: an empirical examination. J. Environ. Econ. Manag. 57(3), 321–333 (2009)Google Scholar
  135. Milnor, J.: On the concept of attractor: correction and remarks. Commun. Math. Phys. 102(3), 517–519 (1985)Google Scholar
  136. Naimzada, A., Sodini, M.: Multiple attractors and nonlinear dynamics in an overlapping generations model with environment. Discrete Dyn. Nat. Soc. 503(695), (2010) (2010)Google Scholar
  137. Naimzada, A., Sacco, P., Sodini, M.: Wealth-sensitive positional competition as a source of dynamic complexity in OLG models. Nonlinear Anal. Real World Appl. 14(1), 1–13 (2013)Google Scholar
  138. Naimzada, A.K., Ricchiuti, G.: Complex dynamics in a monopoly with a rule of thumb. Appl. Math. Comput. 203(2), 921–925 (2008)Google Scholar
  139. Okuguchi, K.: Adaptive expectations in an oligopoly model. Rev. Econ. Stud. 37(2), 233–237 (1970)Google Scholar
  140. Palander, T.: Instability in competition between two sellers. In: Abstracts of Papers Presented at the Research Conference on Economics and Statistics held by the Cowles Commission at Colorado College, Colorado College Publications, General Series No. 208, Studies Series No. 21 (1936)Google Scholar
  141. Panchenko, V., Gerasymchuk, S., Pavlov, O.V.: Asset price dynamics with heterogeneous beliefs and local network interactions. J. Econ. Dyn. Control 37(12), 2623–2642 (2013)Google Scholar
  142. Pérez, R., Ruiz, J.: Global and local indeterminacy and optimal environmental public policies in an economy with public abatement activities. Econ. Model. 24(3), 431–452 (2007)Google Scholar
  143. Poston, T., Stewart, I.: Nonlinear modeling of multistable perception. Behav. Sci. 23(4), 318–334 (1978)Google Scholar
  144. Puu, T.: Chaos in duopoly pricing. Chaos Solitons Fractals 1(6), 573–581 (1991)Google Scholar
  145. Puu, T.: The chaotic monopolist. Chaos Solitons Fractals 5(1), 35–44 (1995)Google Scholar
  146. Puu, T.: On the stability of Cournot equilibrium when the number of competitors increases. J. Econ. Behav. Org. 66(3–4), 445–456 (2008)Google Scholar
  147. Radi, D.: Walrasian versus Cournot behavior in an oligopoly of bounded rational firms. J. Evol. Econ. 27(5), 933–961 (2017)Google Scholar
  148. Radi, D., Lamantia, F.: An asset pricing model with heterogeneous beliefs: stubborn versus fickle traders. In: Managing and Modelling of Financial Risks, Belisa Advertising, s.r.o., Hlubinská 32, 702 00 Ostrava, Czech Republic, vol Ostrava, Czech Republic 1st ed. (2018). ISBN 978-80-248-4225-7Google Scholar
  149. Rand, D.: Exotic phenomena in games and duopoly models. J. Math. Econ. 5(2), 173–184 (1978)Google Scholar
  150. Robinson, J.: A parable on savings and investment. Economica 39, 75–84 (1933)Google Scholar
  151. Rubio, S.J., Casino, B.: Competitive versus efficient extraction of a common property resource: the groundwater case. J. Econ. Dyn. Control 25(8), 1117–1137 (2001)Google Scholar
  152. Schaffer, M.E.: Are profit-maximisers the best survivors? A Darwinian model of economic natural selection. J. Econ. Behav. Org. 12(1), 29–45 (1989)Google Scholar
  153. Schmitt, N., Westerhoff, F.: Speculative behavior and the dynamics of interacting stock markets. J. Econ. Dyn. Control 45, 262–288 (2014)Google Scholar
  154. Szidarovszky, F., Okuguchi, K.: A linear oligopoly model with adaptive expectations: stability reconsidered. J. Econ. 48(2), 79–82 (1988)Google Scholar
  155. Taylor, P.D., Jonker, L.B.: Evolutionarily stable strategies and game dynamics. Math. Biosci. 40(1–2), 145–156 (1978)Google Scholar
  156. Theocharis, R.D.: On the stability of the Cournot solution on the oligopoly problem. Rev. Econ. Stud. 27(2), 133–134 (1960)Google Scholar
  157. Tramontana, F.: Heterogeneous duopoly with isoelastic demand function. Econ. Model. 27(1), 350–357 (2010)Google Scholar
  158. Tramontana, F., Gardini, L., Puu, T.: Cournot duopoly when the competitors operate multiple production plants. J. Econ. Dyn. Control 33(1), 250–265 (2009)Google Scholar
  159. Tramontana, F., Elsadany, A.A., Xin, B., Agiza, H.N.: Local stability of the Cournot solution with increasing heterogeneous competitors. Nonlinear Anal. Real World Appl. 26, 150–160 (2015)Google Scholar
  160. Tuinstra, J.: A price adjustment process in a model of monopolistic competition. Int. Game Theory Rev. 6(3), 417–442 (2004)Google Scholar
  161. Vega-Redondo, F.: The evolution of Walrasian behavior. Econom. J. Econ. Soc. 65(2), 375–384 (1997)Google Scholar
  162. Vriend, N.J.: An illustration of the essential difference between individual and social learning, and its consequences for computational analyses. J. Econ. Dyn. Control 24(1), 1–19 (2000)Google Scholar
  163. Wald, A.: Über einige Gleichungssysteme der mathematischen Ökonomie. Zeitschrift für Nationakökonomie 7, 637–670 (1939)Google Scholar
  164. Westerhoff, F.H.: Multiasset market dynamics. Macroecon. Dyn. 8(5), 596–616 (2004)Google Scholar
  165. Westerhoff, F.H., Dieci, R.: The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: a behavioral finance approach. J. Econ. Dyn. Control 30(2), 293–322 (2006)Google Scholar
  166. Wirl, F.: Stability and limit cycles in one-dimensional dynamic optimisations of competitive agents with a market externality. J. Evol. Econ. 7(1), 73–89 (1997)Google Scholar
  167. Xepapadeas A: Chapter-23, Economic growth and the environment. In: Mäler, K-G., Vincent, J.R. (eds.) Handbook of Environmental Economics. Elsevier, vol. 3, pp. 1219–1271 (2005).  https://doi.org/10.1016/S1574-0099(05)03023-8
  168. Zhang, J.: Environmental sustainability, nonlinear dynamics and chaos. Econ. Theory 14(2), 489–500 (1999)Google Scholar

Copyright information

© Associazione per la Matematica Applicata alle Scienze Economiche e Sociali (AMASES) 2018

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of Technology SydneySydneyAustralia
  2. 2.Department of Economics and ManagementUniversity of PisaPisaItaly
  3. 3.Department of Finance, Faculty of EconomicsVS̆B–Technical University of OstravaOstravaCzech Republic
  4. 4.Department of Mathematical SciencesCatholic University of the Sacred HeartMilanItaly

Personalised recommendations