# Fast and accurate calculation of American option prices

- 56 Downloads

## Abstract

We propose a very efficient numerical method to solve a nonlinear partial differential problem that is encountered in the pricing of American options. In particular, by using the front-fixing approach originally developed in Wu and Kwok (J Financ Eng 6:83–97, 1997) and Nielsen et al. (J Comput Finance 5:69–97, 2002) in conjunction with a suitable change of the time variable, a (nonlinear) partial differential problem is obtained which can be solved very efficiently by means of a finite difference scheme enhanced by repeated Richardson extrapolation. Numerical results are presented showing that the novel algorithm yields excellent results, and performs significantly better than a finite different method with Bermudan approximation.

## Keywords

American option Front-fixing Richardson extrapolation Free-boundary problem## JEL Classification

G13 C6## Notes

## Supplementary material

## References

- Andersen, L., Lake, M., Offengenden, D.: High performance American option pricing. J. Comput. Finance
**20**, 39–87 (2016)CrossRefGoogle Scholar - Atkinson, C.: A free boundary problem of a real option model. SIAM J. Appl. Math.
**69**, 1793–1804 (2009)CrossRefGoogle Scholar - Aydogan, B., Aksoy, U., Ugur, O.: On the methods of pricing American options: case study. Ann. Oper. Res.
**260**, 79–94 (2018)CrossRefGoogle Scholar - Ballestra, L.V.: Repeated spatial extrapolation: an extraordinarily efficient approach for option pricing. J. Comput. Appl. Math.
**256**, 83–91 (2014)CrossRefGoogle Scholar - Ballestra, L.V., Cecere, L.: A fast numerical method to price American options under the Bates model. Comput. Math. Appl.
**72**, 1305–1319 (2016)CrossRefGoogle Scholar - Ballestra, L.V., Sgarra, C.: The evaluation of American options in a stochastic volatility model with jumps: an efficient finite element approach. Comput. Math. Appl.
**60**, 1571–1590 (2010)CrossRefGoogle Scholar - Barone Adesi, G., Elliott, R.J.: Approximations for the values of American options. Stoch. Anal. Appl.
**9**, 115–131 (1991)CrossRefGoogle Scholar - Barone Adesi, G., Whaley, R.: Efficient analytical approximations of American option values. J. Finance
**42**, 301–420 (1987)CrossRefGoogle Scholar - Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ.
**81**, 637–654 (1973)CrossRefGoogle Scholar - Brennan, M.J., Schwartz, E.S.: The valuation of American put options. J. Finance
**32**, 449–462 (1977)CrossRefGoogle Scholar - Carr, P., Jarrow, R., Myneni, R.: Alternative characterizations of American put options. Math. Finance
**2**, 87–106 (1992)CrossRefGoogle Scholar - Chen, X., Chadam, J.: A mathematical analysis of the optimal exercise boundary for American put options. SIAM J. Math. Anal.
**38**, 1613–1641 (2007)CrossRefGoogle Scholar - Chen, G.-Q., Shahgholian, H., Vazquez, J.-L.: Free boundary problems: the forefront of current and future developments. Philos. Trans. R. Soc. A
**373**, 20140285.1–20140285.8 (2015)Google Scholar - Company, R., Egorova, V.N., Jódar, L.: Solving American option pricing models by the front-fixing method: numerical analysis and computing. Abstr. Appl. Anal.
**2014**, 146745 (2014). https://doi.org/10.1155/2009/359623 CrossRefGoogle Scholar - Company, R., Egorova, V.N., Jódar, L.: Constructing positive reliable numerical solution for American call options: a front-fixing approach. J. Comput. Appl. Math.
**291**, 422–432 (2016)CrossRefGoogle Scholar - Cox, J.C. (1996). The constant elasticity of variance option pricing model. J. Portf. Manag. 15–17Google Scholar
- Dempster, M.A.H., Hutton, J.P.: Pricing American stock options by linear programming. Math. Finance
**9**, 229–254 (1999)CrossRefGoogle Scholar - Egorova, V.N., Company, R., Jódar, L.: A new efficient numerical method for solving American option under regime switching model. Comput. Math. Appl.
**71**, 224–237 (2016)CrossRefGoogle Scholar - Fabozzi, F.J., Paletta, T., Stanescu, S., Tunaru, R.: An improved method for pricing and hedging long dated American options. Eur. J. Oper. Res.
**254**, 656–666 (2016)CrossRefGoogle Scholar - Fang, F., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by Fourier-cosine series expansion. Numerische Mathematik
**114**, 27–62 (2009)CrossRefGoogle Scholar - Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput.
**23**, 2095–2122 (2002)CrossRefGoogle Scholar - Hairer, H., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)CrossRefGoogle Scholar
- Hairer, H., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)Google Scholar
- Hajipour, M., Malek, A.: Efficient high-order numerical methods for pricing of options. Comput. Econ.
**45**, 31–47 (2015)CrossRefGoogle Scholar - Holmes, A.D., Yang, H.: A front-fixing finite element method for the valuation of American options. SIAM J. Sci. Comput.
**30**, 2158–2180 (2008)CrossRefGoogle Scholar - Holmes, A.D., Yang, H., Zhang, S.: A front-fixing finite element method for the valuation of American options with regime switching. Int. J. Comput. Math.
**89**, 1094–1111 (2012)CrossRefGoogle Scholar - Huang, J., Pang, J.S.: Option pricing and linear complementarity. J. Comput. Finance
**2**, 32–60 (1998)CrossRefGoogle Scholar - Huang, J., Subrahmanyam, M.G., Yu, G.G.: Pricing and hedging American options: a recursive investigation method. Rev. Financ. Stud.
**9**, 277–300 (1996)CrossRefGoogle Scholar - Jacka, S.D.: Optimal stopping and the American put. Math. Finance
**1**, 1–14 (1991)CrossRefGoogle Scholar - Kazemi, S.-M.-M., Dehghan, M., Bastani, A.F.: Asymptotic expansion of solutions to the Black–Scholes equation arising from American option pricing near the expiry. J. Comput. Appl. Math.
**311**, 11–37 (2017)CrossRefGoogle Scholar - Kim, I.: The analytic valuation of American options. Rev. Financ. Stud.
**3**, 547–572 (1990)CrossRefGoogle Scholar - Lauko, M., Ševčovič, D.: Comparison of numerical and analytical approximations of the early exercise boundary of American put options. ANZIAM J.
**51**, 430–448 (2010)Google Scholar - Lo, C.F., Yuen, P.H., Hui, C.H.: Constant elasticity of variance option pricing model with time-dependent parameters. Int. J. Theor. Appl. Finance
**3**, 661–674 (2000)CrossRefGoogle Scholar - Lo, C.F., Tang, H.M., Ku, K.C., Hui, C.H.: Valuing time-dependent CEV barrier options. J. Appl. Math. Decis. Sci.
**2009**, 359623 (2009). https://doi.org/10.1155/2009/359623 CrossRefGoogle Scholar - Lord, R., Fang, F., Bervoets, C., Oosterlee, C.W.: A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes. SIAM J. Sci. Comput.
**30**, 1678–1705 (2008)CrossRefGoogle Scholar - Mallier, R.: Evaluating approximations to the optimal exercise boundary for American options. J. Appl. Math.
**2**, 71–92 (2002)CrossRefGoogle Scholar - Meyer, G.H., van der Hoek, J.: The evaluation of American options with the method of lines. Adv. Futures Options Res
**4**, 727–752 (1997)Google Scholar - Mohammadi, R.: Quintic B-spline collocation approach for solving generalized Black–Scholes equation governing option pricing. Comput. Math. Appl.
**69**, 777–797 (2015)CrossRefGoogle Scholar - Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of American option problems. J. Comput. Finance
**5**, 69–97 (2002)CrossRefGoogle Scholar - Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty methods for the numerical solution of American multi-asset option problems. J. Comput. Appl. Math.
**222**, 3–16 (2008)CrossRefGoogle Scholar - Patel, K.S., Mehra, M.: Compact finite difference method for pricing European and American options under jump-diffusion models. Working Paper, pp. 1–22. https://arxiv.org/pdf/1804.09043.pdf (2018)
- Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)Google Scholar
- Rad, J.A., Parand, K., Ballestra, L.V.: Pricing European and American options by radial basis point interpolation. Appl. Math. Comput.
**251**, 363–377 (2015)Google Scholar - Shi, X.-J., Yang, L., Huang, Z.-H.: A fixed point method for the linear complementarity problem arising from American option pricing. Acta Mathematicae Applicatae Sinica
**32**, 921–932 (2016)CrossRefGoogle Scholar - Tangman, D.Y., Gopaul, A., Bhuruth, M.: Numerical pricing of options using high-order compact finite difference schemes. J. Comput. Appl. Math.
**218**, 270–280 (2008)CrossRefGoogle Scholar - Thomas, L.H.: Elliptic Problems in Linear Difference Equations Over a Network. Columbia University, New York (1949)Google Scholar
- Toivanen, J.: Numerical valuation of European and American put options under Kou’s jump-diffusion model. SIAM J. Math. Anal.
**38**, 1613–1641 (2007)CrossRefGoogle Scholar - Wilmott, P.: Derivatives: The Theory and Practice of Financial Engineering. Wiley, New York (1998)Google Scholar
- Wu, L., Kwok, Y.K.: A front-fixing method for the valuation of American options. J. Financ. Eng.
**6**, 83–97 (1997)Google Scholar - Xie, D., Chen, X., Chadam, J.: Numerical solution to a free boundary problem arising from mortgage pricing. In: Proceedings of the World Congress on Engineering and Computer Science 2007, WCECS 2007, pp. 1–5 (2007)Google Scholar
- Zhu, S.-P., He, X.-J., Lu, X.: A new integral equation formulation for American put options. Quant. Finance
**18**, 483–490 (2018)CrossRefGoogle Scholar