Advertisement

Limnology

pp 1–12 | Cite as

Vertical profile of organic and elemental carbon in sediments of Songkhla Lake, Thailand

  • Siwatt PongpiachanEmail author
  • Danai Tipmanee
  • Chomsri Choochuay
  • Mattanawadee Hattayanone
  • Woranuch Deelaman
  • Natthapong Iadtem
  • Suratta Bunsomboonsakul
  • Jittree Palakun
  • Saran Poshyachinda
  • Apichart Leckngam
  • Pitipong Somboonpon
  • Thirasak Panyaphirawat
  • Suparerk Aukkaravittayapun
  • Qiyuan Wang
  • Li Xing
  • Guohui Li
  • Yongming Han
  • Junji Cao
Research paper

Abstract

In this study, a historical record of atmospheric deposition in the sediment cores from Songkhla Lake, the second largest lake in Southeast Asia, located in the southern part of Thailand is reported. It is well known that lake sediments, including spheroidal carbonaceous particles generated by both anthropogenic and natural emissions, contain records of lake, catchment, and atmospheric deposition histories. Vertical profiles of these carbonaceous particles can be used to investigate enormously influential disturbances, particularly those triggered by extreme paleo events, over large spatial areas. In this study, organic carbon/elemental carbon (OC/EC) ratios displayed unusually high values of 3.07 and 4.02 for depths 240 and 340 mm, respectively. Previous studies have attributed remarkably high values of OC/EC ratios to both biomass burnings and volcanic eruptions. Although anthropogenic emissions (e.g. fossil fuel combustions) can be responsible for relatively high levels of contamination, as expected, the existence of relatively low OC/EC ratios (i.e. 1.43 ± 0.30) for all sediment samples (except those collected at 240 and 340 mm depths) suggests a tropical background of these particles.

Keywords

Organic carbon Elemental carbon Lake sediment Songkhla lake 

Notes

Acknowledgements

This work was performed with the approval of the Thailand Research Fund, the IEECAS, and the NIDA. The authors acknowledge the assistance of local staff from the Faculty of Technology and Environment, Prince of Songkla University Phuket Campus, Faculty of Environmental Management, Prince of Songkla University Hat-Yai Campus, Faculty of Education, Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU), National Astronomical Research Institute of Thailand (Public Organization), towards field sampling.

Supplementary material

10201_2018_568_MOESM1_ESM.pdf (306 kb)
Supplementary material 1 (PDF 305 kb)

References

  1. Alves CA, Gomes J, Nunes T, Duarte M, Calvo A, Custódio D, Pio C, Karanasiou A, Querol X (2015) Size-segregated particulate matter and gaseous emissions from motor vehicles in a road tunnel. Atmos Res 153:134–144CrossRefGoogle Scholar
  2. Berner RA (1980) Early diagenesis: a theoretical approach (No. 1). Princeton University Press, PrincetonGoogle Scholar
  3. Bessagnet B, Menut L, Curci G, Hodzic A, Guillaume B, Liousse C, Schulz M (2008) Regional modeling of carbonaceous aerosols over Europe—focus on secondary organic aerosols. J Atmos Chem 61(3):175–202CrossRefGoogle Scholar
  4. Bhugwant C, Cachier H, Bessafi M, Leveau J (2000) Impact of traffic on black carbon aerosol concentration at la Reunion Island (Southern Indian Ocean). Atmos Environ 34:3463–3473CrossRefGoogle Scholar
  5. Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241CrossRefGoogle Scholar
  6. Cachier H, Brémond MP, Buat-Ménard P (1989) Carbonaceous aerosols from different tropical biomass burning sources. Nature 340:371–373CrossRefGoogle Scholar
  7. Cao JJ, Lee SC, Ho KF, Zhang XY, Zou SC, Fung KK, Chow JC, Watson JG (2003) Characteristics of carbonaceous aerosol in Pearl River Delta region, China during 2001 winter period. Atmos Environ 37:1451–1460CrossRefGoogle Scholar
  8. Cao JJ, Wu F, Chow JC, Lee SC, Li Y, Chen SW, An ZS, Fung KK, Watson JG, Zhu CS, Liu SX (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos Chem Phys 5:3127–3137CrossRefGoogle Scholar
  9. Cao JJ, Lee SC, Chow JC, Watson JG, Ho KF, Zhang RJ, Jin ZD, Shen ZX, Chen GC, Kang YM, Zou SC, Zhang LZ, Qi SH, Dai MH, Cheng Y, Hu K (2007) Spatial and seasonal distributions of carbonaceous aerosols over China. J Geophys Res 112:D22S11.  https://doi.org/10.1029/2006jd008205 CrossRefGoogle Scholar
  10. Castro ML, Pio AC, Harrison MR, Smith TJD (1999) Carbonaceous aerosols in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781CrossRefGoogle Scholar
  11. Chen L-WA, Chow JC, Watson JG, Moosmüller H, Arnott WP (2004) Modeling reflectance and transmittance of quartz-fiber filter samples containing elemental carbon particles: implications for thermal/optical analysis. J Aerosol Sci 35:765–780CrossRefGoogle Scholar
  12. Chen Y, Sheng G, Bi X, Feng Y, Mai B, Fu J (2005) Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ Sci Technol 39:1861–1867CrossRefGoogle Scholar
  13. Chen B, Du K, Wang Y, Chen J, Zhao J, Wang K, Zhang F, Xu L (2012) Emission and transport of carbonaceous aerosols in urbanized coastal areas in China. Aerosol Air Qual Res 12:371–378CrossRefGoogle Scholar
  14. Chittrakarn T, Bhongsuwan T, Nunnin P, Thong-jerm T (1996) The determination of sedimentation rate in Songkhla Lake using isotopic technique. Physics Department, Faculty of Science, Prince of Songkla University, SongklaGoogle Scholar
  15. Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmos Environ 27A:1185–1201CrossRefGoogle Scholar
  16. Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield TM (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci Technol 34(1):23–34CrossRefGoogle Scholar
  17. Chow JC, Watson JG, Chen L-WA, Arnott WP, Moosmüller H, Fung KK (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Technol 38:4414–4422CrossRefGoogle Scholar
  18. Chow JC, Watson JG, Chen LW, Paredes-Miranda G, Chang MC, Trimble D, Zhen Yu J (2005) Refining temperature measures in thermal/optical carbon analysis. Atmos Chem Phys 5(11):2961–2972CrossRefGoogle Scholar
  19. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303(5661):1173–1176CrossRefGoogle Scholar
  20. Cocker IiiDR, Mader BT, Kalberer M, Flagan RC, Seinfeld JH (2001) The effect of water on gas–particle partitioning of secondary organic aerosol: II. m-xylene and 1, 3, 5-trimethylbenzene photooxidation systems. Atmospheric Environment 35(35):6073–6085CrossRefGoogle Scholar
  21. Cong Z, Kang S, Gao S, Zhang Y, Li Q, Kawamura K (2013) Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environ Sci Technol 47(6):2579–2586CrossRefGoogle Scholar
  22. Engling G, Lee JJ, Tsai YW, Lung SCC, Chou CCK, Chan CY (2009) Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Sci Technol 43(7):662–672CrossRefGoogle Scholar
  23. Gacia E, Duarte CM, Marba N, Terrados J, Kennedy H, Fortes MD, Tri NH (2003) Sediment deposition and production in SE-Asia seagrass meadows. Estuar Coast Shelf Sci 56:909–919CrossRefGoogle Scholar
  24. Gonçalves C, Evtyugina M, Alves C, Monteiro M, Pio C, Tomé M (2011) Organic particulate emissions from field burning of garden and agriculture residues. Atmos Res 101:666–680CrossRefGoogle Scholar
  25. Gray HA, Cass GR, Huntzicker JJ, Heyerdahi EK, Rau JA (1986) Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environ Sci Technol 20:580–589CrossRefGoogle Scholar
  26. Han Y, Cao J, Chow JC, Watson JG, An Z, Jin Z, Fung K, Liu S (2007a) Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC. Chemosphere 69:569–574CrossRefGoogle Scholar
  27. Han Y, Cao J, An Z, Chow JC, Watson JG, Jin Z, Fung K, Liu S (2007b) Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere 69:526–533CrossRefGoogle Scholar
  28. Han YM, Cao JJ, Yan BZ, Kenna TC, Jin ZD, Cheng Y, An ZS (2011) Comparison of elemental carbon in lake sediments measured by three different methods and 150-year pollution history in eastern China. Environ Sci Technol 45(12):5287–5293CrossRefGoogle Scholar
  29. Huang XF, Xue L, Tian XD, Shao WW, Sun TL, Gong ZH, Ju WW, Jiang B, Hu M, He LY (2013) Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: composition, mixing state and secondary formation. Atmos Environ 64:200–207CrossRefGoogle Scholar
  30. Hueglin C, Gehrig R, Baltensperger U, Gysel M, Monn C, Vonmont H (2005) Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos Environ 39:637–651CrossRefGoogle Scholar
  31. Hung CC, Gong GC, Jiann KT, Yeager KM, Santschi PH, Wade TL, Sericano JL, Hsieh HL (2006) Relationship between carbonaceous materials and polychlorinated biphenyls (PCBs) in the sediments of the Danshui River and adjacent coastal areas, Taiwan. Chemosphere 65:1452–1461CrossRefGoogle Scholar
  32. Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Glob Biogeochem Cycles 19:GB2028CrossRefGoogle Scholar
  33. Johnson RL, Shah JJ, Cary RA, Huntzicker JJ (1981) An automated thermal-optical method for the analysis of carbonaceous aerosol. In: Macias ES, Hopke PK (eds) Atmospheric aerosol: source/air quality relationships. American Chemical Society, Washington, pp 223–233CrossRefGoogle Scholar
  34. Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209CrossRefGoogle Scholar
  35. Lavoué D, Liousse C, Cachier H, Stocks BJ, Goldammer JG (2000) Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J Geophys Res Atmos 105:26871–26889CrossRefGoogle Scholar
  36. Li X, Shen Z, Cao J, Liu S, Zhu C, Zhang T (2006) Distribution of carbonaceous aerosol during spring 2005 over the Horqin Sandland in northeastern China. China Particuology 4:316–322CrossRefGoogle Scholar
  37. Lin JJ, Tai SH (2001) Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmos Environ 35:2627–2636CrossRefGoogle Scholar
  38. Martinsson BG, Brenninkmeijer CAM, Carn SA, Hermann M, Heue KP, Van Velthoven PFJ, Zahn A (2009) Influence of the 2008 Kasatochi volcanic eruption on sulfurous and carbonaceous aerosol constituents in the lower stratosphere. Geophys Res Lett 36:L12813CrossRefGoogle Scholar
  39. McCourt WJ, Crow MJ, Cobbing EJ, Amin TC (1996) Mesozoic and Cenozoic plutonic evolution of SE Asia: evidence from Sumatra, Indonesia. Geol Soc Lond Spec Publ 106(1):321–335CrossRefGoogle Scholar
  40. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253CrossRefGoogle Scholar
  41. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20(7):867–900CrossRefGoogle Scholar
  42. Möller A, Kaiser K, Guggenberger G (2005) Dissolved organic carbon and nitrogen in precipitation, throughfall, soil solution, and stream water of the tropical highlands in northern Thailand. J Plant Nutr Soil Sci 168:649–659CrossRefGoogle Scholar
  43. Monteith DT, Stoddard JL, Evans CD, De Wit HA, Forsius M, Høgåsen T, Keller B (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450(7169):537CrossRefGoogle Scholar
  44. Na K, Sawant AA, Song C, Cocker DR III (2004) Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos Environ 38:1345–1355CrossRefGoogle Scholar
  45. Nepstad DC, Verssimo A, Alencar A, Nobre C, Lima E, Lefebvre P, Cochrane M (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398(6727):505CrossRefGoogle Scholar
  46. Odum JR, Hoffmann T, Bowman F, Collins D, Flagan RC, Seinfeld JH (1996) Gas/particle partitioning and secondary organic aerosol yields. Environ Sci Technol 30(8):2580–2585CrossRefGoogle Scholar
  47. Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sánchez-Ochoa A, Gelencsér A (2008) Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos Environ 42:7530–7543CrossRefGoogle Scholar
  48. Pio C, Cerqueira M, Harrison RM, Nunes T, Mirante F, Alves C, Matos M (2011) OC/EC ratio observations in Europe: re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos Environ 45(34):6121–6132CrossRefGoogle Scholar
  49. Pongpiachan S, Thamanu K, Ho KF, Lee SC, Sompongchaiyakul P (2009) Predictions of gas-particle partitioning coefficients (K p) of polycyclic aromatic hydrocarbons at various occupational environments of Songkhla Province, Thailand. Southeast Asian J Trop Med Public Health 40(6):1377–1394PubMedGoogle Scholar
  50. Pongpiachan S, Ho KF, Cao J (2013) Estimation of gas-particle partitioning coefficients (K p) of carcinogenic polycyclic aromatic hydrocarbons by carbonaceous aerosols collected at Chiang-Mai, Bangkok and Hat-Yai, Thailand. Asian Pac J Cancer Prev 14:2461–2476CrossRefGoogle Scholar
  51. Pongpiachan S, Ho KF, Cao J (2014a) Effects of biomass and agricultural waste burnings on diurnal variation and vertical distribution of OC/EC in Hat-Yai City, Thailand. Asian J Appl Sci 7:360–374CrossRefGoogle Scholar
  52. Pongpiachan S, Kudo S, Sekiguchi K (2014b) Chemical characterization of carbonaceous PM10 in Bangkok, Thailand. Asian J of Appl Sci 7:325–342CrossRefGoogle Scholar
  53. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B Ser Chem Phys Meteorol 44:81–99CrossRefGoogle Scholar
  54. Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41(1):88–98CrossRefGoogle Scholar
  55. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227CrossRefGoogle Scholar
  56. Sartelet K, Zhu S, Moukhtar S, André M, André JM, Gros V, Redaelli M (2018) Emission of intermediate, semi and low volatile organic compounds from traffic, and their impact on secondary organic aerosol concentrations over Greater Paris. Atmos Environ 180:126–137CrossRefGoogle Scholar
  57. Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36(1):9–28CrossRefGoogle Scholar
  58. Schoennagel T, Veblen TT, Romme WH, Sibold JS, Cook ER (2005) ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests. Ecol Appl 15(6):2000–2014CrossRefGoogle Scholar
  59. Shen G, Xue M, Chen Y, Yang C, Li W, Shen H, Huang Y, Zhang Y, Chen H, Zhu Y, Wu H, Ding A, Tao S (2014) Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves. Atmos Environ 89:337–345CrossRefGoogle Scholar
  60. Siegert F, Ruecker G, Hinrichs A, Hoffmann AA (2001) Increased damage from fires in logged forests during droughts caused by El Nino. Nature 414(6862):437CrossRefGoogle Scholar
  61. Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ (2007) Patterns and regulation of dissolved organic carbon: an analysis of 7500 widely distributed lakes. Limnol Oceanogr 52(3):1208–1219CrossRefGoogle Scholar
  62. Srivastava AK, Bisht DS, Ram K, Tiwari S, Srivastava MK (2014) Characterization of carbonaceous aerosols over Delhi in Ganga basin: seasonal variability and possible sources. Environ Sci Pollut Res Int 21:8610–8619CrossRefGoogle Scholar
  63. Strader R, Lurmann F, Pandis S (1999) Evaluation of secondary organic aerosol formation in winter. Atmos Environ 33:4849–4863CrossRefGoogle Scholar
  64. Szidat S, Jenk TM, Synal HA, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J Geophys Res 111:2156–2202CrossRefGoogle Scholar
  65. Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29:3527–3544CrossRefGoogle Scholar
  66. VKI (1997) The EmSong Project: Environmental Management in the Songkhla Lake Basin. VKI, Institute for the Water Environment, Danish Hydraulic Institute, PEM consult A/S, COWI A/S, CORIN Prince of Songkhla University, Satec International Ltd. Inception Report, Vols. II/III, Parts 4 and 7. Ministry of Science, Technology and Environment, ThailandGoogle Scholar
  67. Wang Z, Wang T, Guo J, Gao R, Xue L, Zhang J, Zhou Y, Zhou X, Zhang Q, Wang W (2012) Formation of secondary organic carbon and cloud impact on carbonaceous aerosols at Mount Tai, North China. Atmos Environ 46:516–527CrossRefGoogle Scholar
  68. Wei S, Shen G, Zhang Y, Xue M, Xie H, Lin P, Chen Y, Wang X, Tao S (2014) Field measurement on the emissions of PM, OC, EC and PAHs from indoor crop straw burning in rural China. Environ Pollut 184:18–24CrossRefGoogle Scholar
  69. Williamson CE, Morris DP, Pace ML, Olson OG (1999) Dissolved organic carbon and nutrients as regulators of lake ecosystems: resurrection of a more integrated paradigm. Limnol Oceanogr 44(3part2):795–803CrossRefGoogle Scholar
  70. Worrall F, Harriman R, Evans CD, Watts CD, Adamson J, Neal C, Naden PS (2004) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry 70(3):369–402CrossRefGoogle Scholar
  71. Yihui D, Guoyu R, Guangyu S, Peng G, Xunhua Z, Panmao Z, Deer Z, Zongci Z, Shaowu W, Huijun W, Yong L (2007) China’s national assessment report on climate change (I): Climate change in China and the future trend. Adv Clim Change Res 3(Suppl):1–5Google Scholar
  72. Zhang R, Ho KF, Cao J, Han Z, Zhang M, Cheng Y, Lee SC (2009) Organic carbon and elemental carbon associated with PM10 in Beijing during spring time. J Hazard Mater 172:970–977CrossRefGoogle Scholar
  73. Zhang F, Zhao J, Chen J, Xu Y, Xu L (2011) Pollution characteristics of organic and elemental carbon in PM2.5 in Xiamen, China. J Environ Sci 23:1342–1349CrossRefGoogle Scholar
  74. Zhang C, Lu X, Zhai J, Chen H, Yang X, Zhang Q, Jin J (2018) Insights into the formation of secondary organic carbon in the summertime in urban Shanghai. J Environ Sci 72:118–132CrossRefGoogle Scholar
  75. Zhou S, Wang Z, Gao R, Xue L, Yuan C, Wang T, Gao X, Wang X, Nie W, Xu Z, Zhang Q, Wang W (2012) Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmos Environ 63:203–212CrossRefGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2019

Authors and Affiliations

  • Siwatt Pongpiachan
    • 1
    • 2
    Email author return OK on get
  • Danai Tipmanee
    • 3
  • Chomsri Choochuay
    • 4
  • Mattanawadee Hattayanone
    • 4
  • Woranuch Deelaman
    • 4
  • Natthapong Iadtem
    • 4
  • Suratta Bunsomboonsakul
    • 1
  • Jittree Palakun
    • 5
  • Saran Poshyachinda
    • 6
  • Apichart Leckngam
    • 6
  • Pitipong Somboonpon
    • 6
  • Thirasak Panyaphirawat
    • 6
  • Suparerk Aukkaravittayapun
    • 6
  • Qiyuan Wang
    • 2
  • Li Xing
    • 2
  • Guohui Li
    • 2
  • Yongming Han
    • 2
  • Junji Cao
    • 2
  1. 1.NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental DevelopmentNational Institute of Development Administration (NIDA)BangkokThailand
  2. 2.SKLLQG and Key Lab of Aerosol Chemistry & Physics, Institute of Earth EnvironmentChinese Academy of Sciences (IEECAS)Xi’anChina
  3. 3.Faculty of Technology and EnvironmentPrince of Songkla University PhuketPhuketThailand
  4. 4.Faculty of Environmental ManagementPrince of Songkla University Hat-Yai CampusSongklaThailand
  5. 5.Faculty of EducationValaya Alongkorn Rajabhat University Under the Royal Patronage (VRU)PathumthaniThailand
  6. 6.National Astronomical Research Institute of Thailand (Public Organization)Chiang MaiThailand

Personalised recommendations