Advertisement

Limnology

, Volume 20, Issue 2, pp 173–179 | Cite as

Impacts of benzophenone-type UV filters on cladoceran Daphnia carinata

  • Jingjing DuEmail author
  • Mingxiang Qv
  • Ke Li
  • Xiaoyun Yin
  • Fanxiao Meng
  • Jingchao Yang
  • Chuang Ma
Research paper

Abstract

The impacts of three commonly used benzophenone-type UV filters including benzophenone (BP), 2-hydroxy-4-methoxy-benzophenone (BP3), and 2-hydroxy-4-methoxy-benzophenone-5-sulfonicacid (BP4) were assayed in vitro using a cladoceran Daphnia carinata. The 24-h LC50 on D. carinata calculated for BP, BP3, and BP4 was 8.37, 2.18, and 82.27 mg l−1, respectively. BP3 and BP4 significantly impacted on the time of D. carinata first molting at a concentration of 0.1 µg l−1. BP4 had an inhibitory effect on D. carinata molting and BP3 had an inhibitory effect on D. carinata pregnancy at a concentration of 1 µg l−1. Furthermore, BP4 significantly inhibited the number of D. carinata first brood per female at a concentration of 10 µg l−1. All of the endpoints from acute and chronic toxicity demonstrated that the hydroxy group in BP3 and BP4 significantly enhanced the toxic effect compared to BP. Therefore, the toxicity of BP-type UV filters is related to their molecular structure.

Keywords

Benzophenone 2-Hydroxy-4-methoxy-benzophenone 2-Hydroxy-4-methoxy-benzophenone-5-sulfonicacid Daphnia carinata 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31500377, 41501527); Science and Technology Project of Henan Province, China (182102310796); Research Fund for the Doctoral Program of Zhengzhou University of Light Industry (2014BSJJ025); and Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province (XTCX-010).

References

  1. Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM (2000) The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci 54:138–153CrossRefPubMedGoogle Scholar
  2. Díaz-Cruz MS, Gago-Ferrero P, Llorca M, Barceló D (2012) Analysis of UV filters in tap water and other clean waters in Spain. Anal Bioanal Chem 402:2325–2333CrossRefPubMedGoogle Scholar
  3. Du Y, Wang WQ, Pei ZT, Ahmad F, Xu RR, Zhang YM, Sun LW (2017) Acute toxicity and ecological risk assessment of benzophenone-3 (BP-3) and benzophenone-4 (BP-4) in ultraviolet (UV)-filters. Int J Environ Res Pub Health 14:1414CrossRefGoogle Scholar
  4. Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J (2003) Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum. Aquat Toxicol 64(4):437–449CrossRefPubMedGoogle Scholar
  5. Fent K, Kunz PY, Gomez E (2008) UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in fish. Chim Int J Chem 62:368–375CrossRefGoogle Scholar
  6. Fent K, Kunz PY, Zenker A, Rapp M (2010) A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor. Mar Environ Res 69:S4–S6CrossRefPubMedGoogle Scholar
  7. Gago-Ferrero P, Mastroianni N, Díaz-Cruz MS, Barceló D (2013) Fully automated determination of nine ultraviolet filters and transformation products in natural waters and wastewaters by on-line solid phase extraction–liquid chromatography–tandem mass spectrometry. J Chromatogr A 1294:106–116CrossRefPubMedGoogle Scholar
  8. Gao CJ, Liu LY, Ma WL, Zhu NZ, Jiang L, Li Y, Kannan K (2015) Benzonphenone-type UV filters in urine of Chinese young adults: concentration, source and exposure. Environ Pollut 203:1–6CrossRefPubMedGoogle Scholar
  9. Gonçalo M, Ruas E, Figurido A, Gonçalo S (1995) Contact and photocontact sensitivity to sunscreens. Contact Dermat 33:278–280CrossRefGoogle Scholar
  10. Hickey CW (1989) Sensitivity of four New Zealand cladoceran species and Daphnia magna to aquatic toxicants. N Z J Mar Freshw Res 23:131–137CrossRefGoogle Scholar
  11. Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159CrossRefGoogle Scholar
  12. Kunz PY, Fent K (2006) Estrogenic activity of UV filter mixtures. Toxicol Appl Pharmacol 217:86–99CrossRefPubMedGoogle Scholar
  13. Li MH (2012) Acute toxicity of benzophenone-type UV filters and paraben preservatives to freshwater planarian, Dugesia japonica. Toxicol Environ Chem Rev 94:566–573CrossRefGoogle Scholar
  14. Liu H, Sun P, Liu H, Yang S, Wang L, Wang Z (2015) Acute toxicity of benzophenone-type UV filters for photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. Chemosphere 135:182–188CrossRefPubMedGoogle Scholar
  15. Machado AAD, Zarfl C, Rehse S, Kloas W (2017) Low-dose effects: non-monotonic responses for the toxicity of a Bacillus thuringiensis biocide to Daphnia magna. Environ Sci Technol 51(3):1679–1686CrossRefGoogle Scholar
  16. Mitchell SE, Halves J, Lampert W (2004) Coexistence of similar genotypes of Daphnia magna in intermittent populations: response to thermal stress. Oikos 106(3):469–478CrossRefGoogle Scholar
  17. Molins-Delgado D, Gago-Ferrero P, Díaz-Cruz MS, Barceló D (2016) Single and joint ecotoxicity data estimation of organic UV filters and nanomaterials toward selected aquatic organisms. Urban groundwater risk assessment. Environ Res 145:126–134CrossRefPubMedGoogle Scholar
  18. Organisation for Economic Co-operation and Development (OECD) (2008) Guideline for testing of chemicals, Daphnia magna reproduction test (Guideline No. 211), Organisation for Economic Cooperation and Development (OECD), ParisGoogle Scholar
  19. Paredes E, Perez S, Rodil R, Quintana JB, Beiras R (2014) Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata. Chemosphere 104:44–50CrossRefPubMedGoogle Scholar
  20. Poiger T, Buser HR, Balmer ME, Bergqvist PA, Müller MD (2004) Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes. Chemosphere 55:951–963CrossRefPubMedGoogle Scholar
  21. Rodil R, Moeder M (2008) Development of a method for the determination of UV filters in water samples using stir bar sorptive extraction and thermal desorption-gas chromatography–mass spectrometry. J Chromatogr A 1179:81–88CrossRefPubMedGoogle Scholar
  22. Schreurs R, Lanser P, Seinen W, van der Burg B (2002) Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Arch Toxicol 76:257–261CrossRefPubMedGoogle Scholar
  23. Schultz TW, Seward JR, Sinks GD (2010) Estrogenicity of benzophenones evaluated with a recombinant yeast assay: comparison of experimental and rules-based predicted activity. Environ Toxicol Chem 19:301–304Google Scholar
  24. Sieratowicz A, Kaiser D, Behr M, Oetken M, Oehlmann J (2011) Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna. J Environ Sci Health Part A Toxic/Hazardous Subst Environ Eng 46:1311–1319CrossRefGoogle Scholar
  25. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New YorkGoogle Scholar
  26. Stensberg M, Madangopal R, Yale G, Wei Q, Ochoa-Acuña H, Wei A, Mclamore ES, Rickus J, Porterfield DM, Sepúlveda MS (2014) Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 8(8):833–842CrossRefPubMedGoogle Scholar
  27. Suzuki T, Kitamura SR, Sugihara K, Fujimoto N, Ohta S (2005) Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol Appl Pharmacol 203:9–17CrossRefPubMedGoogle Scholar
  28. Tsui MM, Leung HW, Kwan BK, Ng KY, Yamashita N, Taniyasu S, Lam PK, Murphy MB (2015) Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan. J Hazard Mater 292:180–187CrossRefPubMedGoogle Scholar
  29. Wang L, Asimakopoulos AG, Moon HB, Nakata H, Kannan K (2013) Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. Environ Sci Technol 47:4752–4759CrossRefPubMedGoogle Scholar
  30. Wu Y, Lin C, Zhu L (2005) The use of Daphnia carinata for ecotoxicological assessment of contaminated aquatic environments in tropical and subtropical regions. In: River rehabilitation andrestoration, and ecological impact assessment. Symposium of the XXXI IAHR2005 Congress, pp 2114–2120Google Scholar
  31. Wu Y, Lin C, Yuan L (2007) Characteristics of six cladocerans in relation to ecotoxicity testing. Ecol Indic 7(4):768–775CrossRefGoogle Scholar
  32. Zhao H, Wei D, Li M, Du Y (2013) Substituent contribution to the genotoxicity of benzophenone-type UV filters. Ecotoxicol Environ Saf 95:241–246CrossRefPubMedGoogle Scholar
  33. Zucchi S, Blüthgen N, Ieronimo A, Fent K (2011) The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicol Appl Pharmacol 250:137–146CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Society of Limnology 2018

Authors and Affiliations

  • Jingjing Du
    • 1
    • 2
    Email author
  • Mingxiang Qv
    • 1
  • Ke Li
    • 1
  • Xiaoyun Yin
    • 1
  • Fanxiao Meng
    • 1
  • Jingchao Yang
    • 1
  • Chuang Ma
    • 1
    • 2
  1. 1.School of Materials and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China
  2. 2.Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological RestorationZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations