Advertisement

Provision of health care services and regional diversity in Germany: insights from a Bayesian health frontier analysis with spatial dependencies

  • Rouven Edgar HaschkaEmail author
  • Katharina Schley
  • Helmut Herwartz
Original Paper

Abstract

The German health care system is among the most patient-oriented systems in Europe. Nevertheless, distinct utilisation patterns, access barriers due to socio-economic profiles, and potentials of misallocation of medical resources lead to disparities in the provision of health care services. We analyse how a possible over- and undersupply of services and the utilisation of and the access to the health care system relate to regional variations in the population’s well-being. For this purpose, we employ a recent Bayesian stochastic frontier approach that allows for spatial dependence structures. Our results indicate that patient migration plays an important role in contributing to regional differences in the utilisation of the medical infrastructure. As a consequence, policy should take spatial patterns of health care utilisation into account to improve the allocation of medical resources.

Keywords

Health production Health efficiency Stochastic frontier analysis Oversupply of medical services Regional misallocation Bayesian estimation Regional and spatial modelling Markov-chain–Monte Carlo simulation 

JEL Classification

C23 D61 I11 I18 R10 

Notes

Acknowledgements

Financial support by the German Research Association (DFG) Research Training Group 1644 ‘Scaling problems in Statistics’, Grant no. 152112243, is gratefully acknowledged. Helpful comments from two anonymous referees are also gratefully acknowledged.

References

  1. 1.
    Afonso, A. and M. St. Aubyn (2006). Relative efficiency of health provision: A DEA approach with non-discretionary Inputs. ISEG-UTL Economics Working Paper 33/2006 Google Scholar
  2. 2.
    Albrecht, M., Etgeton, S., Ochmann, R.: Faktencheck Gesundheit: Regionale Verteilung von Arztsitzen (Ärztedichte). Bertelsmann Stiftung, Gütersloh (2014)Google Scholar
  3. 3.
    Andersohn, F., Walker, J.: Faktencheck Ru¨cken: Ausmaß und regionale Variationen von Behandlungsf¨allen und bildgebender Diagnostik. Bertelsmann Stiftung, Gütersloh (2016)Google Scholar
  4. 4.
    Augurzky, B., Beivers, A.: Das GKV-Versorgungsstrukturgesetz: Richtung richtig. Umsetzung unklar. RWI Positionen 48, 1–22 (2012)Google Scholar
  5. 5.
    Augurzky, B., Kopetsch, T., Schmitz, H.: What accounts for the regional differences in the utilisation of hospitals in Germany? Eur. J. Health Econ. 14(4), 615–627 (2013)Google Scholar
  6. 6.
    Belitz, C., A. Brezger, T. Kneib, S. Lang, and N. B. Umlauf (2015). BayesX: Software for Bayesian inference in structured additive regression models. Version 2.1. http://www.bayesx.org.Google Scholar
  7. 7.
    Brezger, A., Kneib, T., Lang, S.: BayesX: Analysing Bayesian structured additive regression models. Discussion Paper, Ludwig-Maximilians-Universität München (2003)Google Scholar
  8. 8.
    Burwell, S.M.: Setting value-based payment goals – HHS efforts to improve US health care. N. Engl. J. Med. 372(10), 897–899 (2015)Google Scholar
  9. 9.
    Carrillo, M., Jorge, J.M.: DEA-like efficiency ranking of regional health systems in Spain. Soc. Indic. Res. 133(3), 1–17 (2016)Google Scholar
  10. 10.
    Chakrabarti, A., Rao, D.N.: Efficiency in production of health: a stochastic frontier analysis for Indian states. In: Tavidze, A. (ed.) Global Economics, pp. 105–128. Nova Science Publishers, New York (2007)Google Scholar
  11. 11.
    Cordero, J.M., Alonso-Moran, E., Nuno-Solinis, R., Orueta, J.F., Arce, R.S.: Efficiency assessment of primary care providers: a conditional nonparametric approach. Eur. J. Oper. Res. 240(1), 235–244 (2015)Google Scholar
  12. 12.
    Correia, I., Veiga, P.: Geographic distribution of physicians in Portugal. Eur. J. Health Econ. 11(4), 383–393 (2010)Google Scholar
  13. 13.
    Cullen, M.R., Cummins, C., Fuchs, V.R.: Geographic and racial variation in premature mortality in the US: analyzing the disparities. PLoS ONE 7(4), e32930 (2012)Google Scholar
  14. 14.
    Derose, K.P., Bahney, B.W., Lurie, N., Escarce, J.J.: Immigrants and health care access, quality, and cost. Med. Care Res. Rev. 66(4), 355–408 (2009)Google Scholar
  15. 15.
    Derose, K.P., Escarce, J.J., Lurie, N.: Immigrants and health care: sources of vulnerability. Health Aff. 26(5), 1258–1268 (2007)Google Scholar
  16. 16.
    Dieleman, J.L., Sadat, N., Chang, A.Y., Fullman, N., Abbafati, C., Acharya, P., Adou, A.K., Kiadaliri, A.A., Alam, K., Alizadeh-Navaei, R., et al.: Trends in future health financing and coverage: future health spending and universal health coverage in 188 countries, 2016–40. The Lancet 391(10132), 1783–1798 (2018)Google Scholar
  17. 17.
    Dubay, L., Kenney, G.M.: Health care access and use among low-income children: who fares best? Health Aff. 20(1), 112–121 (2001)Google Scholar
  18. 18.
    Dunn, P.K., Smyth, G.K.: Randomized quantile residuals. J. Comput. Graph. Stat. 5(3), 236–244 (1996)Google Scholar
  19. 19.
    Eibich, P., Ziebarth, N.R.: Examining the structure of spatial health effects in Germany using hierarchical Bayes models. Regional Sci. Urban Econ. 49, 305–320 (2014)Google Scholar
  20. 20.
    Eilers, P.H., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2), 89–102 (1996)Google Scholar
  21. 21.
    Fahrmeir, L., Kneib, T., Lang, S., Marx, B.: Regression: Models, Methods and Applications. Springer Science & Business Media, Berlin (2013)Google Scholar
  22. 22.
    Fahrmeir, L., Lang, S.: Bayesian inference for generalized additive mixed models based on Markov random field priors. J. R. Stat. Soc. 50(2), 201–220 (2001)Google Scholar
  23. 23.
    Fassio, O., Rollero, C., Piccoli, N.D.: Health, quality of life and population density: a preliminary study on ‘contextualized’ quality of life. Soc. Indic. Res. 110(2), 479–488 (2013)Google Scholar
  24. 24.
    Felder, S., Tauchmann, H.: Federal state differentials in the efficiency of health production in Germany: an artifact of spatial dependence? Eur. J. Health Econ. 14(1), 21–39 (2013)Google Scholar
  25. 25.
    Finkelstein, A., Gentzkow, M., Williams, H.: Sources of geographic variation in health care: evidence from patient migration. Q. J. Econ. 131(4), 1681–1726 (2016)Google Scholar
  26. 26.
    Gearhart, R.: The robustness of cross-country healthcare rankings among homogeneous OECD countries. J. Appl. Econ. 19(1), 113–143 (2016)Google Scholar
  27. 27.
    Gelman, A., Hwang, J., Vehtari, A.: Understanding predictive information criteria for Bayesian models. Statist. Comput. 24(6), 997–1016 (2014)Google Scholar
  28. 28.
    Gelman, A., Pardoe, I.: Bayesian measures of explained variance and pooling in multilevel (hierarchical) models. Technometrics 48(2), 241–251 (2006)Google Scholar
  29. 29.
    Greene, W.: Distinguishing between heterogeneity and inefficiency: stochastic frontier analysis of the World Health Organization’s panel data on national health care systems. Health Econ. 13(10), 959–980 (2004)Google Scholar
  30. 30.
    Hadad, S., Hadad, Y., Simon-Tuval, T.: Determinants of healthcare system’s efficiency in OECD countries. Eur. J. Health Econ. 14(2), 253–265 (2013)Google Scholar
  31. 31.
    Han, P.K., Klein, W.M., Arora, N.K.: Varieties of uncertainty in health care: a conceptual taxonomy. Med. Decis. Mak. 31(6), 828–838 (2011)Google Scholar
  32. 32.
    Hasenfuß, G., Märker-Hermann, E., Hallek, M., Fölsch, U.R.: Initiative „Klug entschieden“: gegen Unter- und Überversorgung. International 113(13), A600 (2016)Google Scholar
  33. 33.
    Hausman, J.A.: Specification tests in econometrics. Econometrica 46(6), 1251–1271 (1978)Google Scholar
  34. 34.
    Herwartz, H., Schley, K.: Improving health care service provision by adapting to regional diversity: an efficiency analysis for the case of Germany. Health Policy 122(3), 293–300 (2018)Google Scholar
  35. 35.
    Herwartz, H., Strumann, C.: Hospital efficiency under prospective reimbursement schemes: an empirical assessment for the case of Germany. Eur. J. Health Econ. 15(2), 175–186 (2014)Google Scholar
  36. 36.
    Hossain, M.K., Kamil, A.A., Baten, M.A., Mustafa, A.: Stochastic frontier approach and Data Envelopment Analysis to total factor productivity and efficiency measurement of Bangladeshi rice. PLoS ONE 7(10), e46081 (2012)Google Scholar
  37. 37.
    Jacobs, R., Smith, P.C., Street, A.: Measuring Efficiency in Health Care: Analytic Techniques and Health Policy. Cambridge University Press, Cambridge (2006)Google Scholar
  38. 38.
    Jondrow, J., Lovell, C.K., Materov, I.S., Schmidt, P.: On the estimation of technical inefficiency in the stochastic frontier production function model. J. Econ. 19(2–3), 233–238 (1982)Google Scholar
  39. 39.
    Keselman, H.J., Rogan, J.C.: A comparison of the modified-Tukey and Scheffe methods of multiple comparisons for pairwise contrasts. J. Am. Stat. Assoc. 73(361), 47–52 (1978)Google Scholar
  40. 40.
    Klein, N., Herwartz, H., Kneib, T.: Modelling regional patterns of efficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales. J. Econ. (2019) (forthcoming)Google Scholar
  41. 41.
    Klein, N., Kneib, T., Lang, S., Sohn, A., et al.: Bayesian structured additive distributional regression with an application to regional income inequality in Germany. Ann. Appl. Stat. 9(2), 1024–1052 (2015)Google Scholar
  42. 42.
    Kopetsch, T., Schmitz, H.: Regional variation in the utilisation of ambulatory services in Germany. Health Econ. 23(12), 1481–1492 (2014)Google Scholar
  43. 43.
    Ku, L., Matani, S.: Left out: immigrants’ access to health care and insurance. Health Aff. 20(1), 247–256 (2001)Google Scholar
  44. 44.
    Kumbhakar, S.C., Lovell, C.K.: Stochastic Frontier Analysis. Cambridge University Press, Cambridge (2003)Google Scholar
  45. 45.
    Kwietniewski, L., Schreyögg, J.: Efficiency of physician specialist groups. Health Care Manag. Sci. 21(3), 409–425 (2018)Google Scholar
  46. 46.
    Lang, S., Brezger, A.: Bayesian P-splines. J. Comput. Graph. Stat. 13(1), 183–212 (2004)Google Scholar
  47. 47.
    Latzitis, N., Sundmacher, L., Busse, R.: Regionale Unterschiede der Lebenserwartung in Deutschland auf Ebene der Kreise und kreisfreien St¨adte und deren m¨oglichen Determinanten. Das Gesundheitswesen 73(04), 217–228 (2011)Google Scholar
  48. 48.
    Levinson, W., Kallewaard, M., Bhatia, R.S., Wolfson, D., Shortt, S., Kerr, E.A.: ‘Choosing Wisely’: a growing international campaign. BMJ Qual. Saf. 24(2), 167–174 (2015)Google Scholar
  49. 49.
    Lewbel, A.: Using heteroscedasticity to identify and estimate mismeasured and endogenous regressor models. J. Bus. Econ. Stat. 30(1), 67–80 (2012)Google Scholar
  50. 50.
    Lipitz-Snyderman, A., Bach, P.B.: Overuse of health care services: when less is more…more or less. JAMA Intern. Med. 173(14), 1277–1278 (2013)Google Scholar
  51. 51.
    Luasa, S.N., Dineen, D., Zieba, M.: Technical and scale efficiency in public and private Irish nursing homes—a bootstrap DEA approach. Health Care Manag. Sci. 23, 1–22 (2016)Google Scholar
  52. 52.
    McDade, T.W., Adair, L.S.: Defining the ‘urban’ in urbanization and health: a factor analysis approach. Soc. Sci. Med. 53(1), 55–70 (2001)Google Scholar
  53. 53.
    McNeil, B.J.: Hidden barriers to improvement in the quality of care. N. Engl. J. Med. 345(22), 1612–1620 (2001)Google Scholar
  54. 54.
    Mutter, R.L., Greene, W.H., Spector, W., Rosko, M.D., Mukamel, D.B.: Investigating the impact of endogeneity on inefficiency estimates in the application of stochastic frontier analysis to nursing homes. J. Prod. Anal. 39(2), 101–110 (2013)Google Scholar
  55. 55.
    Ozegowski, S., Sundmacher, L.: Understanding the gap between need and utilization in outpatient care—the effect of supply-side determinants on regional inequities. Health Policy 114(1), 54–63 (2014)Google Scholar
  56. 56.
    Parhizkar, T., Balali, S., Mosleh, A.: An entropy based bayesian network framework for system health monitoring. Entropy 20(6), 416 (2018)Google Scholar
  57. 57.
    Porter, M.E.: A strategy for health care reform—toward a value-based system. N. Engl. J. Med. 361(2), 109–112 (2009)Google Scholar
  58. 58.
    Pross, C., Strumann, C., Geissler, A., Herwartz, H., Klein, N.: Quality and resource efficiency in hospital service provision: a geoadditive stochastic frontier analysis of stroke quality of care in Germany. PLoS ONE 13(9), e0203017 (2018)Google Scholar
  59. 59.
    Rettenmaier, A.J., Wang, Z.: Regional variations in medical spending and utilization: a longitudinal analysis of US Medicare population. Health Econ. 21(2), 67–82 (2012)Google Scholar
  60. 60.
    Ricketts, T.C., Holmes, G.M.: Mortality and physician supply: does region hold the key to the paradox? Health Serv. Res. 42(6p1), 2233–2251 (2007)Google Scholar
  61. 61.
    Rollnick, S., Miller, W.R., Butler, C.C., Aloia, M.S.: Motivational interviewing in health care: helping patients change behavior. J. Chronic Obstruct. Pulm. Dis. 5(3), 203 (2008)Google Scholar
  62. 62.
    Salm, M., Wübker, A.: Causes of regional variation in healthcare utilization in Germany. Number 675. Ruhr Economic Papers. (2017)Google Scholar
  63. 63.
    Sargan, J.D.: Contributions to Econometrics, vol. 1. CUP Archive, Cambridge (1988)Google Scholar
  64. 64.
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Linde, A.: The deviance information criterion: 12 years on. J. R. Stat. Soc. 76(3), 485–493 (2014)Google Scholar
  65. 65.
    Sundmacher, L.: Trends and levels of avoidable mortality among districts: ‘Healthy’ benchmarking in Germany. Health Policy 109(3), 281–289 (2013)Google Scholar
  66. 66.
    The Darthmouth Atlas of Health Care.: Supply-sensitive care. http://www.dartmouthatlas.org/keyissues/issue.aspx?con=2937 (2018). Accessed 15 May 2018
  67. 67.
    Varabyova, Y., Schreyögg, J.: International comparisons of the technical efficiency of the hospital sector: panel data analysis of OECD countries using parametric and nonparametric approaches. Health Policy 112(1–2), 70–79 (2013)Google Scholar
  68. 68.
    Wang, H.-J.: Heteroscedasticity and non-monotonic efficiency effects of a stochastic frontier model. J. Prod. Anal. 18(3), 241–253 (2002)Google Scholar
  69. 69.
    Watanabe, S.: A widely applicable bayesian information criterion. J. Mach. Learn. Res. 14, 867–897 (2013)Google Scholar
  70. 70.
    Wendt, C.: Mapping european healthcare systems: a comparative analysis of financing, service provision and access to healthcare. J. Eur. Social Policy 19(5), 432–445 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rouven Edgar Haschka
    • 1
    Email author
  • Katharina Schley
    • 1
  • Helmut Herwartz
    • 1
  1. 1.Georg-August University of GöttingenGöttingenGermany

Personalised recommendations