, Volume 103, Issue 4, pp 503–526

# A new approach to truncated regression for count data

Original Paper

## Abstract

Standard Poisson and negative binomial truncated regression models for count data include the regressors in the mean of the non-truncated distribution. In this paper, a new approach is proposed so that the explanatory variables determine directly the truncated mean. The main advantage is that the regression coefficients in the new models have a straightforward interpretation as the effect of a change in a covariate on the mean of the response variable. A simulation study has been carried out in order to analyze the performance of the proposed truncated regression models versus the standard ones showing that coefficient estimates are now more accurate in the sense that the standard errors are always lower. Also, the simulation study indicates that the estimates obtained with the standard models are biased. An application to real data illustrates the utility of the introduced truncated models in a hurdle model. Although in the example there are slight differences in the results between the two approaches, the proposed one provides a clear interpretation of the coefficient estimates.

## Keywords

Count data Hurdle model Negative binomial regression Poisson regression Truncated models

## References

1. Baccini, A., Barabesi, L., Cioni, M., Pisani, C.: Crossing the hurdle: the determinants of individual scientific performance. Scienctometrics 101(3), 2035–2062 (2014)
2. Cameron, A.C., Trivedi, P.K.: Regression Analysis of Count Data. Cambridge University Press, New York (2013)
3. Chou, Y., Chuang, H.H., Shao, B.B.M.: Information initiatives of mobile retailers: a regression analysis of zero-truncated count data with underdispersion. Appl. Stoch. Models Bus. Ind. 31, 457–463 (2015)
4. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert $$W$$-function. Adv. Comput. Math. 5(4), 329–359 (1996)Google Scholar
5. Fair, R.: A theory of extramarital affairs. J. Polit. Econ. 86, 45–61 (1978)
6. Farr, M., Stoeckl, N., Sutton, S.: Recreational fishing and boating: are the determinants the same? Mar. Policy 47, 126–137 (2014)
7. Ferrari, S.L.P., Cribari-Nieto, F.: Beta regresssion for modelling rates and proportions. J. Appl. Stat. 31(7), 799–815 (2004)
8. Gonzales-Barron, U., Cadavez, V., Butler, F.: Conducting inferential statistics for low microbial counts in foods using the Poisson-gamma regression. Food Control 37, 385–394 (2014)
9. Grogger, J.T., Carson, R.T.: Models for truncated counts. J. Appl. Econ. 6, 225–238 (1991)
10. Gurmu, S.: Generalized hurdle count data regression models. Econ. Lett. 58, 263–268 (1998)
11. Hardin, J.W., Hilbe, J.M.: Regression models for count data from truncated distributions. Stata J. 15, 226–246 (2015)
12. Hilbe, J.M.: Negative Binomial Regression. Cambridge University Press, New York (2011)
13. Hilbe, J.M.: Modeling Count Data. Cambridge University Press, New York (2014a)
14. Hilbe, J.M.: Functions, data and code for count data, R package version 1.3.2. http://CRAN.R-project.org/package=COUNT (2014b)
15. Jackman, S.: PSCL: Classes and Methods for R Developed in the Political Science Computational Laboratory, Stanford University, R package version 1.4.9. http://CRAN.R-project.org/package=pscl (2015)
16. Liu, X., Saat, M.R., Qin, X., Barkan, C.P.L.: Analysis of U.S. freight-train derailment severity using zero-truncated negative binomial regression and quantile regression. Accid. Anal. Prev. 5, 87–93 (2013)
17. Long, J.S., Freese, J.: Regression Models for Categorical Dependent Variables Using Stata. Stata Press, College Station (2014)
18. Martínez-Espiñeira, R., Amoako-Tuffour, J.: Recreation demand analysis under truncation, overdispersion, and endogenous stratification: an application to Gros Morne National Park. J. Environ. Manag. 88, 1320–1332 (2008)
19. Mullahy, J.: Specification and testing of some modified count data models. J. Econ. 33, 341–365 (1986)
20. O’Neill, M.F., Faddy, M.J.: Use of binary and truncated negative binomial modelling in the analysis of recreational catch data. Fish. Res. 60, 471–477 (2003)
21. Pazvakawambwa, L., Indongo, N., Kazembe, L.: A hurdle negative binomial regression model for non-marital fertility in Namibia. J. Math. Syst. Sci. 4, 498–508 (2014)Google Scholar
22. Prebensen, N.K., Altin, M., Uysal, M.: Length of stay: a case of Northerm Norway. Scand. J. Hosp. Tour. 15(Supplement 1), 28–47 (2015)
23. Rigby, R.A., Stasinopoulos, D.M.: Generalized additive models for location, scale and shape. Appl. Stat. 54, 507–554 (2005)
24. Santos Silva, J.M.C.: Generalized Poisson regression for positive count data. Commun. Stat. Simul. Comput. 26(3), 1089–1102 (1997)
25. Stasinopoulos, D.M., Rigby, R.A.: Generalized additive models for location, scale and shape (GAMLSS) in R. J. Stat. Softw. 23(7), 1–46 (2007)
26. Stasinopoulos, D.M., Rigby, R.A.: Generating and fitting truncated (gamlss.family) distributions, R package version 4.3-1, URL http://CRAN.R-project.org/package=gamlss.tr (2015)
27. Stasinopoulos, D.M., Rigby, R.A.: Generalised Additive Models for Location Scale and Shape, R package version 4.4-0. URL http://CRAN.R-project.org/package=gamlss (2016)
28. Winkelmann, R.: Econometric Analysis of Count Data. Springer, Heidelberg (2008)
29. Yee, T.W: VGAM: Vector Generalized Linear and Additive Models, R package version 1.0-1. http://CRAN.R-project.org/package=VGAM (2016)

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

## Authors and Affiliations

• Ana María Martínez-Rodríguez
• 1
• Antonio Conde-Sánchez
• 1
• María José Olmo-Jiménez
• 1
1. 1.Department of Statistics and Operations ResearchUniversity of JaénJaénSpain