AStA Advances in Statistical Analysis

, Volume 102, Issue 2, pp 289–304 | Cite as

Estimating the hazard functions of two alternating recurrent events in the presence of covariates

Original Paper
  • 39 Downloads

Abstract

The motivation for this paper is a cystic fibrosis data which records a patient’s times to relapse and times to cure under several recurrences of the disease. The idea is to study the impact of covariates on the hazard rates of two alternately occurring events. The dependence between the times to the two events over the different cycles is modeled through an autoregressive-type setup. The partial likelihood function is then derived and the estimators obtained. The estimators are shown to be consistent and asymptotically normal. The technique is applied to study the motivating data. A simulation study is also conducted to corroborate the results.

Keywords

Alternating recurrent events Cox’s proportional hazard model Cystic fibrosis data 

Mathematics Subject Classification

Primary 62N01 

Notes

Acknowledgements

The authors are grateful to the editors and the referees for their helpful comments, which went a long way in improving the paper.

References

  1. Andersen, P.K., Gill, R.D.: Cox’s regression model for counting processes: a large sample study. Ann Stat 10(4), 1100–1120 (1982)MathSciNetCrossRefMATHGoogle Scholar
  2. Breslow, N.: Covariance analysis of censored survival data. Biometrics 30(1), 89–99 (1974)CrossRefGoogle Scholar
  3. Breslow, N.: Analysis of survival data under the proportional hazards model. Rev Int Stat 43(1), 45–57 (1975)CrossRefMATHGoogle Scholar
  4. Cox, D.R.: Regression models and life-tables. J R Stat Soc Ser B (Methodol) 34(2), 187–220 (1972)MathSciNetMATHGoogle Scholar
  5. Cox, D.R.: Partial likelihood. Biometrika 62, 269–276 (1975)MathSciNetCrossRefMATHGoogle Scholar
  6. Cox, D.R., Oakes, D.: Analysis of survival data. CRC Press, Boca Raton (1984)Google Scholar
  7. Fuchs, H., Borowitz, D., Christiansen, D., Morris, E., Nash, M., Ramsey, B., Rosenstein, B., Smith, A., Wohl, M.: Effect of aerosolized re-combinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with Cystic Fibrosis. N. Engl. J. Med. 331(10), 637–642 (1994)CrossRefGoogle Scholar
  8. Huang, C.Y., Wang, M.C.: Nonparametric estimation of the bivariate recurrence time distribution. Biometrics 94(61), 392–402 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. Kalbfleisch, J.D., Prentice, R.L.: The Statistical Analysis of Failure Time Data, 2nd edn. Wiley, New Jersey (2002)CrossRefMATHGoogle Scholar
  10. Lenglart, E.: Relation de domination entre deux processus. Biometrics 13(2), 171–179 (1977)MathSciNetMATHGoogle Scholar
  11. Lin, D.Y.: On the Breslow estimator. Lifetime Data Anal 13, 471–480 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. Rebolledo, R.: Central limit theorems for local martingales. Z. Wahrsch. verw. Gebiete 51, 269–286 (1980)MathSciNetCrossRefMATHGoogle Scholar
  13. Sen Roy, S., Chatterjee, M.: Estimating the hazard functions of two alternately occurring recurrent events. J. Appl. Stat. 42(7), 1547–1555 (2015)MathSciNetCrossRefGoogle Scholar
  14. Therneau, T.M., Hamilton, S.A.: rhDNase as an example of recurrent event analysis. Stat. Med. 16(18), 2029–2047 (1997)CrossRefGoogle Scholar
  15. Wang, M.C., Chang, S.H.: Nonparametric estimation of a recurrent survival function. J. Am. Stat. Assoc. 94(445), 146–153 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. Wei, L.J., Lin, D.Y., Weissfeld, L.: Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 84(408), 1065–1073 (1989)MathSciNetCrossRefGoogle Scholar
  17. Yan, J., Fine, J.P.: Analysis of episodic data with application to recurrent pulmonary exacerbations in cystic fibrosis patients. J. Am. Stat. Assoc. 103(482), 498–510 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Statistics and InformaticsAliah UniversityKolkataIndia
  2. 2.Department of StatisticsUniversity of CalcuttaKolkataIndia

Personalised recommendations