Devulcanized EPDM without paraffinic oil in the production of blends as a potential application of the residues from automobile industry

  • Fabiula D. B. de SousaEmail author
  • Aline Zanchet
  • Elaine S. Marczynski
  • Vinicius Pistor
  • Rudinei Fiorio
  • Janaina S. Crespo


Vulcanized residues of ethylene–propylene–diene monomer rubber (EPDM) from expanded profiles trims, called EPDM-r, were treated to remove the paraffinic oil and then devulcanized by microwaves at different exposure times (0, 2, 3 and 4 min). Elastomeric formulations of EPDM-r compound/raw EPDM compound containing 67 wt% of recycled phase were produced, and the characteristics of the vulcanization process, mechanical and dynamic-mechanical properties, morphology and accelerated aging of the blends were analyzed. The promising results showed that it is possible to obtain new rubber compositions containing 67 wt% of EPDM-r with similar—or even higher—mechanical properties than the Reference sample (without EPDM-r), pointing out to the potential use of devulcanized EPDM-r in several applications, as a possible solution to the destination of these materials, aiming at the sustainable development.


  • Production of elastomeric blends containing a high concentration of ethylene–propylene–diene monomer rubber (EPDM), i.e. 67 wt%.

  • Devulcanization of the EPDM residue by microwaves irradiation.

  • Increasing the microwave exposure time improved the efficiency of the devulcanization process.

  • Extraction of the paraffinic oil from the EPDM residue (before devulcanization) improved the efficiency of the devulcanization process.

  • The final material has a potential application of the residues from the automobile industry itself, such as in the manufacture of new products.


EPDM Paraffinic oil Recycling Devulcanization Microwaves 



The authors would like to thank Ciaflex Rubber Industry Ltd. (Caxias do Sul, Rio Grande do Sul, Brazil) for supplying the expanded profiles trims and rubber recipes.


  1. 1.
    Karaağaç B, Kalkan ME, Deniz V (2017) End of life tyre management: Turkey case. J Mater Cycles Waste Manag 19:577–584. CrossRefGoogle Scholar
  2. 2.
    Karakurt C (2015) Microstructure properties of waste tire rubber composites: an overview. J Mater Cycles Waste Manag 17:422–433. CrossRefGoogle Scholar
  3. 3.
    Zanchet A, Carli LN, Giovanela M et al (2012) Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application. Mater Des 39:437–443. CrossRefGoogle Scholar
  4. 4.
    Weber T, Zanchet A, Brandalise RN et al (2008) Grinding and characterization of scrap rubbers powders. J Elastom Plast 40:147–159. CrossRefGoogle Scholar
  5. 5.
    Garcia PS, de Sousa FDB, de Lima JA et al (2015) Devulcanization of ground tire rubber: physical and chemical changes after different microwave exposure times. Express Polym Lett 9:1015–1026. CrossRefGoogle Scholar
  6. 6.
    de Sousa FDB, Zanchet A, Scuracchio CH (2017) Influence of reversion in compounds containing recycled natural rubber: in search of sustainable processing. J Appl Polym Sci. CrossRefGoogle Scholar
  7. 7.
    Zhang X, Saha P, Cao L et al (2018) Devulcanization of waste rubber powder using thiobisphenols as novel reclaiming agent. Waste Manag 78:980–991. CrossRefGoogle Scholar
  8. 8.
    Zanchet A, Bandeira Dotta A, de Sousa FDB (2017) Relationship among vulcanization, mechanical properties and morphology of blends containing recycled EPDM. Recycling 2:16. CrossRefGoogle Scholar
  9. 9.
    Asaro L, Gratton M, Seghar S, Aït Hocine N (2018) Recycling of rubber wastes by devulcanization. Resour Conserv Recycl 133:250–262. CrossRefGoogle Scholar
  10. 10.
    Bockstal L, Berchem T, Schmetz Q, Richel A (2019) Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: a review. J Clean Prod 236:117574. CrossRefGoogle Scholar
  11. 11.
    Zanchet A, Masiero A, de Sousa FDB, Brandalise RN (2019) The influence of UV-accelerated aging process on industrial waste containing EPDM. Recycling 4:25. CrossRefGoogle Scholar
  12. 12.
    Zanchet A, Carli LN, Giovanela M et al (2009) Characterization of microwave-devulcanized composites of ground SBR scraps. J Elastom Plast 41:497–507. CrossRefGoogle Scholar
  13. 13.
    de Sousa FDB, Scuracchio CH, Hu GH, Hoppe S (2017) Devulcanization of waste tire rubber by microwaves. Polym Degrad Stab 138:169–181. CrossRefGoogle Scholar
  14. 14.
    Imbernon L, Norvez S (2016) From landfilling to vitrimer chemistry in rubber life cycle. Eur Polym J 82:347–376. CrossRefGoogle Scholar
  15. 15.
    Mandal SK, Alam N, Debnath SC (2012) Reclaiming of ground rubber tire by safe multifunctional rubber additives: I. Tetra benzylthiuram disulfide. Rubber Chem Technol 85:629–644. CrossRefGoogle Scholar
  16. 16.
    Movahed SO, Ansarifar A, Estagy S (2016) Review of the reclaiming of rubber waste and recent work on the recycling of ethylene–propylene–diene rubber waste. Rubber Chem Technol 89:54–78. CrossRefGoogle Scholar
  17. 17.
    de Sousa FDB, Gouveia JR, de Camargo Filho PMF et al (2015) Blends of ground tire rubber devulcanized by microwaves/HDPE-Part B: influence of clay addition. Polim E Tecnol 25:382–391. CrossRefGoogle Scholar
  18. 18.
    de Sousa FDB, Scuracchio CH (2015) The role of carbon black on devulcanization of natural rubber by microwaves. Mater Res J Mater 18:791–797. CrossRefGoogle Scholar
  19. 19.
    de Sousa FDB, Zanchet A (2018) In the search for sustainable processing in compounds containing recycled natural rubber: the role of the reversion process. Recycling 3:47. CrossRefGoogle Scholar
  20. 20.
    Weber T, Zanchet A, Crespo JS et al (2011) Caracterização de artefatos elastoméricos obtidos por revulcanização de resíduo industrial de SBR(copolímero de butadieno e estireno). Polim E Tecnol 21:429–435. CrossRefGoogle Scholar
  21. 21.
    de Sousa FDB, Gouveia JR, de Camargo Filho PMF et al (2015) Blends of ground tire rubber devulcanized by microwaves/HDPE—Part A: influence of devulcanization process. Polim E Tecnol 25:256–264. CrossRefGoogle Scholar
  22. 22.
    de Sousa FDB, Scuracchio CH, Hu GH, Hoppe S (2016) Effects of processing parameters on the properties of microwave-devulcanized ground tire rubber/polyethylene dynamically revulcanized blends. J Appl Polym Sci. CrossRefGoogle Scholar
  23. 23.
    de Sousa FDB (2017) Devulcanization of elastomers and applications. In: Çankaya N (ed) Elastomers. InTech, Rijeka, pp 209–229Google Scholar
  24. 24.
    Scuracchio CH, Waki DA, Bretas RES (2006) Caracterização térmica e reológica de borracha de pneu desvulcanizada por microondas. Polim E Tecnol 16:46–52CrossRefGoogle Scholar
  25. 25.
    Scuracchio CH, Waki DA, da Silva MLCP (2007) Thermal analysis of ground tire rubber devulcanized by microwaves. J Therm Anal Calorim 87:893–897. CrossRefGoogle Scholar
  26. 26.
    Novotny DS, Marsh RI, Masters FC, Tally DN (1978) Microwave devulcanization of rubber. US 4(104):2Google Scholar
  27. 27.
    Aoudia K, Azem S, Aït Hocine N et al (2017) Recycling of waste tire rubber: microwave devulcanization and incorporation in a thermoset resin. Waste Manag 60:471–481. CrossRefGoogle Scholar
  28. 28.
    Formela K, Hejna A, Zedler Ł et al (2019) Microwave treatment in waste rubber recycling–recent advances and limitations. Express Polym Lett 13:565–588CrossRefGoogle Scholar
  29. 29.
    Pistor V, Ornaghi FG, Fiorio R et al (2010) Devulcanization of ethylene–propylene–diene polymer residues (EPDM-r) by microwaves. Polim E Tecnol 20:165–169. CrossRefGoogle Scholar
  30. 30.
    de Sousa FDB, Zanchet A, Scuracchio CH (2019) From devulcanization to revulcanization: challenges in getting recycled tire rubber for technical applications. ACS Sustain Chem Eng 7:8755–8765. CrossRefGoogle Scholar
  31. 31.
    de Sousa FDB, Zanchet A, Ornaghi Júnior HL, Ornaghi FG (2019) Revulcanization kinetics of waste tire rubber devulcanized by microwaves: challenges in getting recycled tire rubber for technical application. ACS Sustain Chem Eng. CrossRefGoogle Scholar
  32. 32.
    Khavarnia M, Movahed SO (2016) Butyl rubber reclamation by combined microwave radiation and chemical reagents. J Appl Polym Sci. CrossRefGoogle Scholar
  33. 33.
    Molanorouzi M, Mohaved SO (2016) Reclaiming waste tire rubber by an irradiation technique. Polym Degrad Stab 128:115–125. CrossRefGoogle Scholar
  34. 34.
    Movahed SO, Ansarifar A, Zohuri G et al (2016) Devulcanization of ethylene–propylene–diene waste rubber by microwaves and chemical agents. J Elastom Plast 48:122–144. CrossRefGoogle Scholar
  35. 35.
    Hirayama D, Saron C (2012) Chemical modifications in styrene-butadiene rubber after microwave devulcanization. Ind Eng Chem Res 51:3975–3980. CrossRefGoogle Scholar
  36. 36.
    Bani A, Polacco G, Gallone G (2011) Microwave-induced devulcanization for poly(ethylene–propylene–diene) recycling. J Appl Polym Sci 120:2904–2911. CrossRefGoogle Scholar
  37. 37.
    Pistor V, Scuracchio CH, Oliveira PJ et al (2011) Devulcanization of ethylene–propylene–diene polymer residues by microwave-Influence of the presence of paraffinic oil. Polym Eng Sci 51:697–703. CrossRefGoogle Scholar
  38. 38.
    Pistor V, Ornaghi FG, Fiorio R, Zattera AJ (2010) Thermal characterization of oil extracted from ethylene–propylene–diene terpolymer residues (EPDM-r). Thermochim Acta 510:93–96. CrossRefGoogle Scholar
  39. 39.
    de Sousa FDB, Scuracchio CH (2012) Vulcanization behavior of NBR with organically modified clay. J Elastomers Plast 44:263–272. CrossRefGoogle Scholar
  40. 40.
    Huibin O, Mohamed S, Thierry B, Jean-claude G (2016) Determination of the activation energy of silicone rubbers using different kinetic analysis methods. EDP Sci. CrossRefGoogle Scholar
  41. 41.
    de Sousa FDB (2016) Vulcanization of natural rubber: Past, present and future perspectives. In: Hamilton JL (ed) Nat. rubber Prop. Behav. Appl. Nova Science Publishers, New York, pp 47–88Google Scholar
  42. 42.
    Zanchet A, Demori R, de Sousa FDB et al (2019) Sugar cane as an alternative green activator to conventional vulcanization additives in natural rubber compounds: thermal degradation study. J Clean Prod 207:248–260. CrossRefGoogle Scholar
  43. 43.
    Kumar CR, Fuhrmann I, Karger-Kocsis J (2002) LDPE-based thermoplastic elastomers containing ground tire rubber with and without dynamic curing. Polym Degrad Stab 76:137–144. CrossRefGoogle Scholar
  44. 44.
    Kumnuantip C, Sombatsompop N (2003) Dynamic mechanical properties and swelling behaviour of NR/reclaimed rubber blends. Mater Lett 57:3167–3174. CrossRefGoogle Scholar
  45. 45.
    De D, Maiti S, Adhikari B (1999) Reclaiming of rubber by a renewable resource material (RRM). II. Comparative evaluation of reclaiming process of NR vulcanizate by RRM and diallyl disulfide. J Appl Polym Sci 73:2951–2958.;2-b CrossRefGoogle Scholar
  46. 46.
    Cao LM, Cao XD, Jiang XJ et al (2013) In situ reactive compatibilization and reinforcement of peroxide dynamically vulcanized polypropylene/ethylene–propylene–diene monomer tpv by zinc dimethacrylate. Polym Compos 34:1357–1366. CrossRefGoogle Scholar
  47. 47.
    Nair TM, Kumaran MG, Unnikrishnan G, Kunchandy S (2008) Ageing studies of ethylene propylene diene monomer rubber/styrene butadiene rubber blends: effects of heat, ozone, gamma radiation, and water. J Appl Polym Sci 107:2923–2929. CrossRefGoogle Scholar
  48. 48.
    Rattanasom N, Poonsuk A, Makmoon T (2005) Effect of curing system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends. Polym Test 24:728–732. CrossRefGoogle Scholar
  49. 49.
    Pistor V, Ornaghi FG, Fiorio R, Zattera AJ (2010) Thermal and mechanical characterization of a terpolymer mixture of devulcanized recycled ethylene–propylene–diene and low-density polyethylene. J Elastomers Plast 42:417–431. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Fabiula D. B. de Sousa
    • 1
    • 2
    Email author
  • Aline Zanchet
    • 3
  • Elaine S. Marczynski
    • 4
  • Vinicius Pistor
    • 5
  • Rudinei Fiorio
    • 6
  • Janaina S. Crespo
    • 5
  1. 1.Technology Development CenterUniversidade Federal de Pelotas (UFPel)PelotasBrazil
  2. 2.Center of Engineering, Modeling and Applied Social ScienceUniversidade Federal do ABC (UFABC)Santo AndréBrazil
  3. 3.Polytechnic School of Civil EngineeringIMEDPasso FundoBrazil
  4. 4.Physical Metallurgy LaboratoryUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  5. 5.Universidade de Caxias do SulCaxias Do SulBrazil
  6. 6.Instituto Federal de EducaçãoCiência e Tecnologia do Rio Grande do Sul (IFRS)Caxias Do SulBrazil

Personalised recommendations