Advertisement

Evaluation of GIS-based multi-criteria decision-making methods for sanitary landfill site selection: the case of Sivas city, Turkey

  • Can Bülent KarakuşEmail author
  • Demet Demiroğlu
  • Ayşen Çoban
  • Alptekin Ulutaş
ORIGINAL ARTICLE
  • 52 Downloads

Abstract

Landfill is the most common method used to eliminate municipal solid waste in developing countries. As in all developing residential units, Sivas city is also encountering a major solid waste problem menacing both public health and environment. This study analyzes the 7 criteria (geological structure, land ability class, transportation, groundwater, surface water, residential areas, and existing land use) utilized for solid waste landfill area preference reasons by employing some Geographical Information System (GIS) based, multi-criteria decision-making methods such as Analytical Hierarchy Process (AHP) and Simple Additive Weighting (SAW). Evaluation of alternative areas defined by AHP and SAW methods is conducted with the help of Combinative Distance-Based Assessment (CODAS). The study area was classified as “most suitable”, “suitable”, “averagely suitable”, “too little suitable” and “not suitable” in terms of their sanitary landfill properties. According to AHP and SAW analyses results, it was determined that a large part of the study area (respectively, 46.82% and 27.81%) is within the category of “averagely suitable”. After the application based on GIS oriented multi-criteria decision-making analysis, 4 alternative places as solid waste disposal areas were recommended by taking environmental and physical factors into consideration. AHP–CODAS and SAW–CODAS methods were mutually utilized to rank these 4 areas according to their suitability. As a result, “Area1” in integrated weights (AHP and SAW)–CODAS was selected as the most appropriate place for sanitary permanent landfill.

Keywords

Sanitary landfill AHP SAW CODAS 

Notes

Acknowledgements

We would like to thank the public institutions for providing the data used in this study.

References

  1. 1.
    Santhosh LG, Sivakumar Babu GL (2018) Landfill site selection based on reliability concepts using the Drastic method and AHP integrated with GIS—a case study of Bengaluru city, India. Georisk Asses and Manag Risk Eng Sys Geohaz 12(3):234–252Google Scholar
  2. 2.
    URL1 (2019) https://ec.europa.eu. Erisim tarihi 22 Jan 2019
  3. 3.
    Kaza S, Yao L.C, Bhada-Tata P, Van Woerden F (2018) What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development;. Washington, DC: World Bank. © World Bank. https://openknowledge.worldbank.org/handle/10986/30317 License: CC BY 3.0 IGO
  4. 4.
    Reinhart DR, Basel Al-Yousfi A (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag Res 14(4):337–346CrossRefGoogle Scholar
  5. 5.
    Elahi A, Samadyar H (2014) Municipal solid waste landfill site selection using analytic hierarchy process method for Tafresh Town. Mid East J Sci Res 22(9):1294–1307Google Scholar
  6. 6.
    Soltani A, Hewage K, Reza B, Sadiq R (2015) Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: a review. Waste Manag 35:318–328CrossRefGoogle Scholar
  7. 7.
    Yunus MZM, Mohamad II, Omar CM, Yusof MBM (2015) Integrating and utilizing AHP and GIS for landfill site selection. Appl Mech Mater 773:100–104CrossRefGoogle Scholar
  8. 8.
    Ersoy H, Bulut F, Berkun M (2013) Landfill site requirements on the rock environment: a case study. Eng Geol 154:20–35CrossRefGoogle Scholar
  9. 9.
    Kontos TD, Komilis DP, Halvadakis CP (2005) Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Manag 25(8):818–832CrossRefGoogle Scholar
  10. 10.
    Vasiljevic TZ, Srdjevic Z, Bajcetic R, Miloradov MV (2011) GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: a case study from Serbia. Environ Manag 49:445–458CrossRefGoogle Scholar
  11. 11.
    Şener S, Şener E, Nas B, Karaguzel R (2010) Combining AHP with GIS for landfill site selection: a case study in the Lake Beysehir catchment area (Konya, Turkey). Waste Manag 30:2037–2046CrossRefGoogle Scholar
  12. 12.
    Bagchi A (2004) Design of landfills and integrated solid waste management, 3rd edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Allen BG, Caetano P, Costa C, Cummins V, Donnelly J, Koukoulas S, Vendas D (2003) A landfill site selection process incorporating GIS modelling. In: Proceedings of SardiniaGoogle Scholar
  14. 14.
    Şener B, Suzen LM, Doyuran V (2006) Landfill site selection by using geographic information systems. Environ Geol 49:376–388CrossRefGoogle Scholar
  15. 15.
    Yeşilnacar Mİ, Süzen ML, Şener B, Doyuran V (2012) Municipal solid waste landfill site selection for the city of Sanliurfa-Turkey: an example using MCDA integrated with GIS. Int J Dig Earth 5(2):147–164CrossRefGoogle Scholar
  16. 16.
    Chabuk AJ, Al-Ansari N, Hussain HM, Knutsson S, Pusch R (2017) GIS-based assessment of combined AHP and SAW methods for selecting suitable sites for landfill in Al-Musayiab Qadhaa, Babylon, Iraq. Environ Earth Sci 76(5):209CrossRefGoogle Scholar
  17. 17.
    Bagdanavičiūtė I, Valiūnas J (2013) GIS-based land suitability analysis integrating multi-criteria evaluation for the allocation of potential pollution sources. Environ Earth Sci 68(6):1797–1812CrossRefGoogle Scholar
  18. 18.
    Chang NB, Parvathinathan G, Breeden JB (2008) Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J Environ Manag 87(1):139–153CrossRefGoogle Scholar
  19. 19.
    Akbari V, Rajabi MA, Chavoshi SH, Shams R (2008) Landfill site selection by combining GIS and fuzzy multi criteria decision analysis, case study: Bandar Abbas, Iran. World Appl Sci J 3:39–47Google Scholar
  20. 20.
    Mahini AS, Gholamalifard M (2006) Siting MSW landfills with a weighted linear combination methodology in a GIS environment. Int J Environ Sci Tech 3(4):435–445CrossRefGoogle Scholar
  21. 21.
    Shahabi H, Keihanfard S, Ahmad BB, Amiri MJT (2014) Evaluating Boolean, AHP and WLC methods for the selection of waste landfill sites using GIS and satellite figures. Environ Earth Sci 71(9):4221–4233CrossRefGoogle Scholar
  22. 22.
    Rahmat ZG, Niri MV, Alavi N, Goudarzi G, Babaei AA, Baboli Z, Hosseinzadeh M (2017) Landfill site selection using GIS and AHP: a case study: Behbahan, Iran. KSCE J Civ Eng 21(1):111–118CrossRefGoogle Scholar
  23. 23.
    Saatsaz M, Monsef I, Rahmani M, Ghods A (2018) Site suitability evaluation of an old operating landfill using AHP and GIS techniques and integrated hydrogeological and geophysical surveys. Environ Monit Assess 190(3):144CrossRefGoogle Scholar
  24. 24.
    Eskandari M, Homaee M, Mahmoodi S, Pazira E, Van Genuchten MT (2015) Optimizing landfill site selection by using land classification maps. Environ Sci Pollut Res 22(10):7754–7765CrossRefGoogle Scholar
  25. 25.
    GDM (2005) 1/25.000 scaled digital topographic map of the study area, Ministry of National Defense Map General Directorate, AnkaraGoogle Scholar
  26. 26.
    GDRA (2001) 1/25.000 scaled digital soil map of the study area, Ministry of Food, Agriculture and Livestock, General Directorate of Rural Affairs, AnkaraGoogle Scholar
  27. 27.
    GDMRE (2005) 1/25.000 scaled numerical geology map of the study area, General Directorate of Mining and Exploration, AnkaraGoogle Scholar
  28. 28.
    MEUPGDS (2015) 1/100.000 scale environmental plan map, Ministry of Environment and Urban Planning General Directorate of Spatial Planning, AnkaraGoogle Scholar
  29. 29.
    GDMRE (1996) Environmental geology and natural resources of the city of Sivas, General Directorate of Mineral Research and Exploration Central Anatolia 1st Region Directorate Geological Studies Department, Sivas, 168sGoogle Scholar
  30. 30.
    Beskese A, Demir HH, Ozcan HK, Okten HE (2015) Landfill site selection using fuzzy AHP and fuzzy TOPSIS: a case study for Istanbul. Environ Earth Sci 73(7):3513–3521CrossRefGoogle Scholar
  31. 31.
    Bhushan N, Rai K (2004) Strategic decision making: applying the analytic hierarchy process. Springer, New York, p 172zbMATHGoogle Scholar
  32. 32.
    Saaty T (1980) The analytic hierarchy process. McGrawHill, New YorkzbMATHGoogle Scholar
  33. 33.
    Yal G, Akgün H (2013) Landfill site selection and landfill liner design for Ankara, Turkey. Environ Earth Sci 70:2729–2752CrossRefGoogle Scholar
  34. 34.
    Eastman JR (2003) IDRISI Kilimanjaro: guide to GIS and figure processing. manual version 14.00. Clark University WorcesterGoogle Scholar
  35. 35.
    Eastman JR (1993) IDRISI: a grid based geographic analysis system, version 4.1. Graduate School of Geography, Clark University, WorcesterGoogle Scholar
  36. 36.
    Afshari A, Mojahed M, Yusuff RM (2010) Simple additive weighting approach to personnel selection problem. Int J Innov Manag Technol 1:511–515Google Scholar
  37. 37.
    Yeşilnacar Mİ, Süzen ML, Doyuran V, Şener B (2008) Generation of GIS based algorithms for site selection in landfill. Scientific and Technological Research Council of Turkey. Project number: 106Y305Google Scholar
  38. 38.
    Barakat A, Hilali A, El Baghdadi M, Touhami F (2017) Landfill site selection with GIS-based multi-criteria evaluation technique—a case study in Béni Mellal-Khouribga region, Morocco. Environ Earth Sci 76(12):413CrossRefGoogle Scholar
  39. 39.
    Keshavarz Ghorabaee M, Zavadskas EK, Turskis Z, Antucheviciene J (2016) A new combinative distance-based assessment (codas) method for multi-criteria decision-making. Econ Comput Econ Cybern Stud Res 50(3):25–44Google Scholar
  40. 40.
    Zavadskas EK, Podvezko V (2016) Integrated determination of objective criteria weights in MCDM. Int J Inf Tech Dec Making 15(02):267–283CrossRefGoogle Scholar
  41. 41.
    Malczewski J (2004) GIS-based land-use suitability analysis: a critical overview. Prog Plan 62:3–65CrossRefGoogle Scholar
  42. 42.
    Hansen HS (2005) GIS-based multi-criteria analysis of wind farm development. In: Proceedings of the 10th Scandinavian Research Conference on Geographical Information Science, ScanGIS, Denmark p 75–87Google Scholar
  43. 43.
    Liu R, Zhang K, Zhang Z, Borthwick AG (2014) Land-use suitability analysis for urban development in Beijing. J Environ Manage 145:170–179CrossRefGoogle Scholar
  44. 44.
    Güler D, Yomralıoğlu T (2017) Alternative suitable landfill site selection using analytic hierarchy process and geographic information systems: a case study in Istanbul. Environ Earth Sci 76(20):678CrossRefGoogle Scholar
  45. 45.
    Guiqin W, Li Q, Guoxue L, Lijun C (2009) Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. J Environ Eng 90:2414–2421Google Scholar
  46. 46.
    Ezzouaq M, Chouaouta H (2002) Guide de pre´se´lection de site de de´charge controˆle´e des de´chets me´nagers. Coope´ration Maroco-Allemande GTZ–PGPE (Programme de Gestion et de Protection de l’Environment) p 84Google Scholar
  47. 47.
    Sharifi M, Hadidi M, Vessali E et al (2009) Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill siting in Kurdistan Province, western Iran. Waste Manag 29:2740–2758CrossRefGoogle Scholar
  48. 48.
    Yeşilnacar Mİ, Çetin H (2005) Site selection for hazardous wastes: a case study from the GAP area, Turkey. Eng Geol 81(4):371–388CrossRefGoogle Scholar
  49. 49.
    Donevska KR, Gorsevski PV, Jovanovski M, Peševski I (2012) Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environ Earth Sci 67(1):121–131CrossRefGoogle Scholar
  50. 50.
    Kumar S, Hassan MI (2013) Selection of a landfill site for solid waste management: an application of AHP and spatial analyst tool. J Ind Soc Remote Sens 41(1):45–56CrossRefGoogle Scholar
  51. 51.
    Khanlari G, Abdilor Y, Babazadeh R, Mohebi Y (2012) Landfill site selection for municipal solid waste management using GSI method, Malayer, Iran. Adv. Environ Biol 6(2):886–894Google Scholar
  52. 52.
    Wang G, Qin L, Li G, Chen L (2009) Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. J Environ Manage 90(8):2414–2421CrossRefGoogle Scholar
  53. 53.
    ME (1991) Regulation on Control of Solid Wastes, Turkey Republic Ministry of Environment, Official Gazette No: 20814, 14 Mar 1991Google Scholar
  54. 54.
    Şener B (2004) Landfill site selection by using geography information System. MSc Dissertation, Middle East Technical UniversityGoogle Scholar
  55. 55.
    Siddiqui MZ, Everett JW, Vieux BE (1996) Landfill siting using geographic information systems: a demonstration. J Environ Eng 122(6):515–523CrossRefGoogle Scholar
  56. 56.
    Alavi N, Goudarzi G, Babaei AA, Jaafarzadeh N, Hosseinzadeh M (2013) Municipal solid waste landfill site selection with geographic information systems and analytical hierarchy process: a case study in Mahshahr County, Iran. Waste Manag Res 31(1):98–105CrossRefGoogle Scholar
  57. 57.
    Ghobadi MH, Babazadeh R, Bagheri V (2013) Siting MSW landfills by combining AHP with GIS in Hamedan province, western Iran. Environ Earth Sci 70(4):1823–1840CrossRefGoogle Scholar
  58. 58.
    Demesouka OE, Vavatsikos AP, Anagnostopoulos KP (2013) Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study. Waste Manag 33(5):1190–1206CrossRefGoogle Scholar
  59. 59.
    Djokanović S, Abolmasov B, Jevremović D (2016) GIS application for landfill site selection: a case study in Pančevo, Serbia. Bull Eng Geol Environ 75(3):1273–1299CrossRefGoogle Scholar
  60. 60.
    Jamshidi-Zanjani A, Rezaei M (2017) Landfill site selection using combination of fuzzy logic and multi-attribute decision-making approach. Environ Earth Sci 76(13):448CrossRefGoogle Scholar
  61. 61.
    Uyan M (2014) MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environ Earth Sci 71(4):1629–1639CrossRefGoogle Scholar
  62. 62.
    Motlagh ZK, Sayadi MH (2015) Siting MSW landfills using MCE methodology in GIS environment (case study: Birjand plain, Iran). Waste Manag 46:322–337CrossRefGoogle Scholar
  63. 63.
    Atmaca E (2004) Investigation and re-planning of central solid waste management in Sivas, PhD Thesis, Cumhuriyet University, Institute of Science and Technology, Environmental Engineering Department, Sivas, 136sGoogle Scholar
  64. 64.
    Chabuk AJ, Al-Ansari N, Hussain HM, Knutsson S, Pusch R, Laue J (2017) Combining GIS applications and method of multi-criteria decision-making (AHP) for landfill siting in Al-Hashimiyah Qadhaa, Babylon, Iraq. Sustainability 9(11):1932CrossRefGoogle Scholar
  65. 65.
    Majumdar A, Hazra T, Dutta A (2017) Landfill site selection by AHP based multi-criteria decision making tool: a case study in Kolkata, India. J Ins Eng 98(3):277–283Google Scholar
  66. 66.
    Wang Y, Li J, An D, Xi B, Tang J, Wang Y, Yang Y (2018) Site selection for municipal solid waste landfill considering environmental health risks. Resour Conserv Recycl 138:40–46CrossRefGoogle Scholar
  67. 67.
    Makropoulos CK, Butler D (2006) Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi-criteria decision-making. J Environ Model Soft 21:69–84CrossRefGoogle Scholar
  68. 68.
    Kara C, Doratli N (2012) Application of GIS/AHP in siting sanitary landfill: a case study in Northern Cyprus. J Waste Manag Res 30:966–980CrossRefGoogle Scholar
  69. 69.
    Alexakis DD, Sarris A (2014) Integrated GIS and remote sensing analysis for landfill sitting in Western Crete, Greece. Environ Earth Sci 72(2):467–482CrossRefGoogle Scholar
  70. 70.
    Paul K, Dutta A, Krishna AP (2014) A comprehensive study on landfill site selection for Kolkata City, India. J Air Waste Manag Assoc 64(7):846–861CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Can Bülent Karakuş
    • 1
    Email author
  • Demet Demiroğlu
    • 2
  • Ayşen Çoban
    • 2
  • Alptekin Ulutaş
    • 3
  1. 1.Urban And Regional Planning Department, Faculty of Architecture-Fine Arts and DesignSivas Cumhuriyet UniversitySivasTurkey
  2. 2.Department of Landscape Architecture, Faculty of Engineering and ArchitectureKilis 7 Aralık UniversityKilisTurkey
  3. 3.Department of International Trade and Logistics, Faculty of Economics and Administrative SciencesSivas Cumhuriyet UniversitySivasTurkey

Personalised recommendations