Advertisement

NOx scrubbing with H2O2/HNO3 solutions achieved with a laboratory bubble contactor

  • Ons GhrissEmail author
  • Hédi Ben Amor
  • Hassen Chekir
  • Mohamed-Razak Jeday
ORIGINAL ARTICLE
  • 4 Downloads

Abstract

In this work, the removal of dilute nitrogen oxides NOx from the gaseous effluents of Tunisian nitric acid plant by absorption into aqueous hydrogen peroxide solutions containing or not nitric acid was studied. All semi-continuous absorption tests were carried out at ambient conditions and at 40 Pa as NOx partial pressure. The effects of the gas flow rate, the initial H2O2 concentration and the presence of HNO3 on the NOx absorption efficiency (ANOx) were studied. The tests results revealed that ANOx increases with an increase in initial H2O2 concentration in the scrubbing liquid, but decreases with an increase of gas flow rate. Furthermore, the presence of nitric acid in the aqueous hydrogen peroxide solution has a positive effect on ANOx. These results confirmed that the removal of NOx liberated from the plants of the Tunisian Chemical Group (TCG) by absorption into H2O2 solution is a feasible and an effective solution.

Keywords

NOx Reactive absorption Laboratory bubble contactor Hydrogen peroxide Nitric acid 

Notes

Acknowledgements

We would like to thank all the workers and staff in the Tunisian Chemical Group (TCG) and those in the National Engineering school of Gabes (ENIG).

References

  1. 1.
    EFMA (2000) Production of nitric acid, in: best available techniques for pollution prevention and control in the european fertilizer industry, European Fertilizer Manufacturers’ Association, BrusselsGoogle Scholar
  2. 2.
    Yildirim O, Kiss AA, Huser N, Lebmann K, Kenig E (2012) Reactive absorption in chemical process industry: a review on current activities. Chem Eng J 213:371–391CrossRefGoogle Scholar
  3. 3.
    Thiemann M, Scheibler E, Wiegand KW (2012) Nitric acid, nitrous acid, and nitrogen oxides. Ullmann’s Encycl Ind Chem 24:178–225Google Scholar
  4. 4.
    Wiegand KW, Scheibler E, Thiemann M (1990) Computation of plate columns for NOx absorption by a new stage to stage method. Chem Eng Technol 13:289–297CrossRefGoogle Scholar
  5. 5.
    Dvorak R, Chlapek P, Jecha D, Puch R, Stehlık P (2010) New approach to common removal of dioxins and NOx as a contribution to environmental protection. J Clean Prod 18(9):881–888CrossRefGoogle Scholar
  6. 6.
    Liang Z, Ma X, Lin H, Tang Y (2011) The energy consumption and environmental impacts of SCR technology in China. Appl Energy 88(4):1120–1129CrossRefGoogle Scholar
  7. 7.
    Chen CT, Tan WL (2012) Mathematical modeling, optimal design and control of an SCR reactor for NOx removal. J Taiwan Inst Chem Engin 43(3):409–419CrossRefGoogle Scholar
  8. 8.
    ANPE: Agence Nationale de Protection Environnementale (2010). Décret N° 2010–2519 fixant les valeurs limites à la source des polluants de l’air de sources fixesGoogle Scholar
  9. 9.
    Chung SJ, Moon IS (2013) An improved method of removal for high concentrations of NO by electro-scrubbing process. Process Saf Environ Prot 91(1–2):153–158CrossRefGoogle Scholar
  10. 10.
    Pillai KC, Chung SJ, Raju T, Moon IS (2009) Exprimental aspects of combined NOx and SO2 removal from flue gas mixture in an integrated wet scrubber electrochemical cell system. Chemodphere 76(5):657–664.  https://doi.org/10.1016/j.chemosphere.2009.04.013 CrossRefGoogle Scholar
  11. 11.
    Zhao Y, GUO TX, Chen ZY, Du YR (2010) Simultaneous removal of SO2 and NO using M/NaClO2 complex absorbent. Chem Eng J 160:42–47CrossRefGoogle Scholar
  12. 12.
    Khan NE, Andewuji YG (2010) Absorption and oxidation of nitric oxide (NO) by aqueous solutions of sodium persulfate in bubble column reactor. Ind Eng Chem Res 49:8749–8760CrossRefGoogle Scholar
  13. 13.
    Patwardhan JA, Joshi JB (2003) Unified model for NOx absorption in aqueous alkaline and dilute acidic solutions. AICHE J 49(11):2728–2748CrossRefGoogle Scholar
  14. 14.
    De Paiva JL, Kachan GC (1998) Modeling and simulation of a packed column for NOx absorption with hydrogen peroxide. Ind Eng Chem Res 37(2):609–614CrossRefGoogle Scholar
  15. 15.
    Liémans I, Thomas D (2013) Simultaneous NOx and SOx reduction from oxyfuel exhaust gases using acidic solutions containing hydrogen peroxide. Energy Procedia 37:1348–1356CrossRefGoogle Scholar
  16. 16.
    Myers EB Jr, Overcamp TJ (2002) Hydrogen peroxide scrubber for the control of nitrogen oxides. Environ Eng Sci 19(5):321–327CrossRefGoogle Scholar
  17. 17.
    Chu H, Chien TW, Twu BW (2001) The absorption of NO in NaClO2/NaOH solutions. J Hazard Mater 84(2–3):241–252CrossRefGoogle Scholar
  18. 18.
    De Paiva JL, Kachan GC (2004) Absorption of nitrogen oxides in aqueous solution in a structured packing pilot column. Chem Eng Process 43(7):941–948CrossRefGoogle Scholar
  19. 19.
    Thomas D, Vanderschuren J (1996) The absorption oxidation of NOx with hydrogen peroxide for the treatment of tail gases. Chem Eng Sci 51(11):2649–2654CrossRefGoogle Scholar
  20. 20.
    Thomas D, Vanderschuren J (1998) Effect of temperature on NOx absorption into nitric acid solutions containing hydrogen peroxide. Ind. Eng. Res 37(11):4418–4423CrossRefGoogle Scholar
  21. 21.
    Hüpen B, Kenig EY (2005) Rigorous modelling of NOx absorption in tray and packed columns. Chem Eng Sci 60(18):6462–6471CrossRefGoogle Scholar
  22. 22.
    Dalaouti N, Seferlis P (2005) Design sensitivity of reactive absorption units for improved dynamic performance and cleaner production: the NOx removal process. J Clean Prod 13(15):1461–1470CrossRefGoogle Scholar
  23. 23.
    Lee YN, Lind JA (1986) Kinetics of aqueous phase oxidation of nitrogen by hydrogen peroxide. J Geophys Res 91:2793–2800CrossRefGoogle Scholar
  24. 24.
    Baveja KK, Subbarao D, Sarkar SK (1979) Kinetics of absorption of nitric oxide in hydrogen peroxide solutions. J Chem Eng Jpn 12(4):322–325CrossRefGoogle Scholar
  25. 25.
    Liémans I, Alban B, Tranier JP, Thomas D (2011) SOx and NOx absorption based removal into acidic conditions for the flue gas treatment in oxy-fuel combustion. Energy Procedia 4:2847–2854CrossRefGoogle Scholar
  26. 26.
    Baveja KK, Subbarao D, Sarkar SK (1979) Kinetics of absorption of nitric oxide in hydrogen peroxide solutions. J Chem Eng Jpn 12:322–325CrossRefGoogle Scholar
  27. 27.
    Rodier, J. (2016). L’analyse de l’eau - Eaux naturelles, eaux résiduaires, eau de mer. 10e édition. Dunod, ParisGoogle Scholar
  28. 28.
    Barrut B (2011) Etude et optimisation du fonctionnement d’une colonne airlift à dépression–Application à l’aquaculture, Université Montpellier IIGoogle Scholar
  29. 29.
    Thomas D, Vanderschuren J (2000) Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueus solutions. Sep Purif Techn 18:37–45CrossRefGoogle Scholar
  30. 30.
    Suchak NJ, Joshi JB (1994) Simulation and optimization of NOx absorption system in nitric acid manufacture. AICHE J 40:944–956CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Ons Ghriss
    • 1
    Email author
  • Hédi Ben Amor
    • 1
  • Hassen Chekir
    • 2
  • Mohamed-Razak Jeday
    • 1
  1. 1.National Engineering School of Gabes (ENIG), Research Laboratory “Processes, Energetics Environment and Electrical Systems”Gabes UniversityGabesTunisia
  2. 2.Tunisian Chemical Group (TCG)GabesTunisia

Personalised recommendations