Advertisement

Kinetics study of the methane production from experimental recycled pulp and paper sludge by CSTR technology

  • Mohammed BakraouiEmail author
  • Fadoua Karouach
  • Badr Ouhammou
  • Mohammed Aggour
  • Azzouz Essamri
  • Hassan El Bari
ORIGINAL ARTICLE
  • 5 Downloads

Abstract

The aims of this study were to perform the anaerobic digestion of recycled pulp and paper sludge (RPPS) at laboratory scale, using a continuously stirred tank reactor (CSTR) digester, to determine the methane yield of this type of waste, and to control the physico-chemical parameters to maintain its stability during the experiment. Recycled pulp and paper sludge has an important organic matter with a COD/BOD5 ratio of 1.94, which is easily degradable. The result of anaerobic digestion experiment has given a methane yield coefficient of 159 N mL CH4/g VS, while biodegradability was found around 77% (in VS). The results obtained from the kinetic models studied in this work, mainly the modified Gompertz, first-order, Richards, and Logistic kinetic models show that the difference between the predicted and measured methanogenic potentials was higher in the modified Gompertz kinetic model (0.25–12.94%) than in the Logistic model (0.18–2.69%). The Logistic model showed the best fit for the substrates used. The Logistic, the modified Gompertz, Richards models fitted adequately to cumulative methane production (R2 was 0.9744; 0.9597 and 0.9655, respectively). Specifically, the Logistic model predicted the methane production volume like the experimental within loads added of 2.5 g VS/L.

Keywords

Anaerobic digestion CSTR Kinetic study Mesophilic Recycled pulp and paper sludge 

Notes

Acknowledgements

The authors are very grateful to IRESEN (Institut de Recherche en Energie Solaire et Energies Nouvelles— www.iresen.org) for funding this research as part of the project “InnoThermo-InnoBiomass Digester 14”.

Funding

This research was supported by University Ibn Tofail Kenitra Morocco (Grant No. 5321962058336860).

References

  1. 1.
    Maheshwari R et al (2012) Analysis of effluents released from recycled paper industry. J Adv Sci Res 3(1):82–85MathSciNetGoogle Scholar
  2. 2.
    Abdullah R, Ishak CF, Kadir WR, Abu Bakar R (2015) Characterization and feasibility assessment of recycled paper mill sludges for land application in relation to the environment. Int J Environ Res Public Health 12(8):9314–9329.  https://doi.org/10.3390/ijerph120809314 CrossRefGoogle Scholar
  3. 3.
    Schroeder BG, Zanoni PRS, Magalhães WLE et al (2017) Evaluation of biotechnological processes to obtain ethanol from recycled paper sludge. J Mater Cycles Waste Manag 19:463.  https://doi.org/10.1007/s10163-015-0445-0 CrossRefGoogle Scholar
  4. 4.
    FIFAGE, Fédération des industries papier carton au Maroc. www.cfcim.org/wp-content/uploads/2017/07/Papier-carton.pdf
  5. 5.
    Kamali M, Khodaparast Z (2014) Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol Environ Saf 114:326–342.  https://doi.org/10.1016/j.ecoenv.2014.05.005 CrossRefGoogle Scholar
  6. 6.
    El Bari H, Bakraoui M, Karouach F (2018) Energetic potential of recycled pulp and paper sludge, program of the joint international workshop on ecological sustainable waste management–energetic utilization of organic waste “BIOWASTE4E”, November 26–28th, Kenitra (Morocco). http://wohlgemuth.f2.htw-berlin.de/projekte/biowaste4e/
  7. 7.
    Meyer T et al (2014) Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res 65:321–349CrossRefGoogle Scholar
  8. 8.
    Zwaina HM et al (2013) The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. J Environ Chem Eng 1(1–2):61–64CrossRefGoogle Scholar
  9. 9.
    Rodriguez R, Moreno L (2010) Modelling of a upflow anaerobic sludge blanket reactor. In: Brebbia C (ed) Proceedings of the tenth international conference on modelling, monitoring and management of water pollution, Bucharest, June 9–11 2010. WIT Press, pp 301–310Google Scholar
  10. 10.
    Beltrán F, González M, Alvarez P (1997) Ingenieria Quimica 331:161–168Google Scholar
  11. 11.
    Ekstrand E-M et al (2013) Methane potentials of the Swedish pulp and paper industry—a screening of wastewater effluents. Appl Energy 112:507–517CrossRefGoogle Scholar
  12. 12.
    Joute Y, El bari H, Belhadj S, Karouach F, Gradi Y, Stelte W, Bjerre AB (2016) Semi-continuous anaerobic co-digestion of cow manure and banana waste: effects of mixture ratio. Appl Ecol Environ Res 14(2):337–349CrossRefGoogle Scholar
  13. 13.
    Saghouri M, Mansoori Y, Rohani A et al (2018) Modelling and evaluation of anaerobic digestion process of tomato processing wastes for biogas generation. J Mater Cycles Waste Manag 20:561.  https://doi.org/10.1007/s10163-017-0622-4 CrossRefGoogle Scholar
  14. 14.
    Akyol Ç, Demirel B, Onay TT (2015) Recovery of methane from tannery sludge: the effect of inoculum to substrate ratio and solids content. J Mater Cycles Waste Manag 17:808.  https://doi.org/10.1007/s10163-014-0306-2 CrossRefGoogle Scholar
  15. 15.
    Field J, Sierra R, Lettinga G (1988) Ensayos anaerobios. In: Fdz-Polanco F, Garcia PA, Hernando S (eds) 4° seminario de depuration anaerobia de aguas residuales. Secretariado de Publicaciones, Universidad de Valladolid, Valladolid, pp 52–82Google Scholar
  16. 16.
    APHA (1989) Methods for examination of water and wastewater, 20th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USAGoogle Scholar
  17. 17.
    Žarković D, Krgović M, Rajaković L (2004) Rationalization of water consumption in paper industry. Chem Ind 8:327–337Google Scholar
  18. 18.
    Field J, Sierra R, Lettinga G (1988) Ensayos anaerobios. In: Fdz-Polanco F, Garcia PA, Hernando S (eds) Seminario de depuration anaerobia de aguas residuales. Secretariado de Publicaciones, Universidad de Valladolid, Valladolid, pp 52–82Google Scholar
  19. 19.
    Fannin KF (1987) Start-up, operation, stability and control. In: Chynoweth DP, Isaacson R (eds) Anaerobic digestion of biomass. Elsevier, London, pp 171–196Google Scholar
  20. 20.
    Martín MA, Siles JA, Chica AF, Martín A (2010) Biomethanization of orange peel. Biores Technol 101:8993–8999CrossRefGoogle Scholar
  21. 21.
    Belhadj S, Joute Y, El Bari H, Serrano A, Gil A, Siles JÁ, Chica AF, Ángeles Martín M (2014) Evaluation of the anaerobic co-digestion of sewage sludge and tomato waste at mesophilic temperature. Appl Biochem Biotechnol 172:3862–3874CrossRefGoogle Scholar
  22. 22.
    U.S. Environmental Protection Agency (1998) Method 1684: Total, fixed, and volatile solids in water, solids and biosolids. Draft, October 1998. Office of Water, Washington, DCGoogle Scholar
  23. 23.
    Zwietering MH, Jongenburger I, Rombouts FM, Riet KV (1990) Modelling of the bacterial growth curve. Appl Environ Microbiol 56:1875e1881. https://doi.org/0099-2240/90/061875-07$02.00/0Google Scholar
  24. 24.
    van Mogens Henze Mark CM, Loosdrecht George A, Brdjanovic Ekama Damir (2008) Biological wastewater treatment principles, modelling and design. IWA Publishing, LondonGoogle Scholar
  25. 25.
    Belhadj S, Karouach F, El Bari H, Joute Y (2013) The biogas production from mesophilic anaerobic digestion of vinasse. IOSR J Environ Sci Toxicol Food Technol 5(6):72–77. ISSN:2319–2399. www.Iosrjournals.Org
  26. 26.
    Bolzonella D, Pavan P, Macé S, Cecchi F (2006) Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Sci Technol 53(8):23–32.  https://doi.org/10.2166/wst232 CrossRefGoogle Scholar
  27. 27.
    Banks CJ, Chesshire M, Heaven S, Arnold R (2011) Anaerobic digestion of source segregated domestic food waste: performance assessment by mass and energy balance. Bioresour Technol 102(2):612–620.  https://doi.org/10.1016/j.biortech.2010.08.005 CrossRefGoogle Scholar
  28. 28.
    Martín-González L, Font X, Vicent T (2013) Alkalinity ratios to identify process imbalances in anaerobic digesters treating source-sorted organic fraction of municipal wastes. Biochem Eng J 76:1–5CrossRefGoogle Scholar
  29. 29.
    Serranoa A, Ángel Siles J, Francisco Chica A, Ángeles Martín M, Karouach F, Mesfioui A, El Bari H (2013) Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste. Environ Technol.  https://doi.org/10.1080/09593330.2013.855822 Google Scholar
  30. 30.
    Belhadj S, El Bari H, Karouach F, Joute Y, Chica AF, de los Ángeles M, Santos M (2013) Production of methane from mesophilic anaerobic digestion of sewage sludge in Morocco. Am J Adv Sci Res (AJASR) 2:81–91Google Scholar
  31. 31.
    Fannin KF (1987) Start-up, operation, stability and control. In: Chynoweth DP, Isaacson R (eds) Anaerobic digestion of biomass. Elsevier, London, pp 171–196Google Scholar
  32. 32.
    Wheatley A (1990) Anaerobic digestion: a waste treatment technology. Elsevier, LondonGoogle Scholar
  33. 33.
    Berhe S, Leta S (2019) Anaerobic co-digestion of tannery wastes using two stage anaerobic sequencing batch reactor: focus on process performance of hydrolytic–acidogenic step. J Mater Cycles Waste Manag 21:666.  https://doi.org/10.1007/s10163-019-00837-1 CrossRefGoogle Scholar
  34. 34.
    Bayr S, Rintala J (2012) Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge. Water Res 46:4713–4720CrossRefGoogle Scholar
  35. 35.
    Karlsson A, Truong X-B, Gustavsson J, Svensson B, Nilsson F, Ejlertsson J (2011) Anaerobic treatment of activated sludge from Swedish pulp and paper mills—biogas production potential and limitations. Environ Technol 32(14):1559–1571CrossRefGoogle Scholar
  36. 36.
    Jokela J, Rintala J, Oikari A, Reinikainen O, Mutka K, Nyrönen T (1997) Aerobic composting and anaerobic digestion of pulp and paper mill sludges. Water Science and Technology 36(11):181–188CrossRefGoogle Scholar
  37. 37.
    Driessen WJBM, Habets LHA, Zumbrägel M, Wasenius C-O (1999) Anaerobic treatment of recycled paper mill effluent with the internal circulation reactor. 6th IAWQ Symposium on Forest Industry Wastewaters, TampereGoogle Scholar
  38. 38.
    Rahmaninia M, Khosravani A (2013) Improving the paper recycling process of old corrugated container wastes. Cellul Chem Technol 49(2):203–208Google Scholar
  39. 39.
    Yusuf MOL, Anyata BU, Saroj DP (2013) Development of simplified anaerobic digestion models (SADM’s) for studying anaerobic biodegradability and kinetics of complex biomass. Biochem Eng J.  https://doi.org/10.1016/j.bej.2013.06.018 Google Scholar
  40. 40.
    Lopez JAS, Santos MAM, Perez AFC, Martin AM (2009) Anaerobic digestion of glycerol derived from biodiesel. Bioresour Technol 100:5609–5615CrossRefGoogle Scholar
  41. 41.
    Karouach Fadoua, El Bari Hassan, Belhadj Siham, Joute Yassine, Cheikhi Nabil, Essamri Azzouz (2013) The anaerobic digestion of organic fraction of household waste of Kenitra City. Am J Adv Sci Res 1(12):441–450Google Scholar
  42. 42.
    Zhen G, Lu X, Li YY, Zhao Y (2014) Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion. Appl Energy 128:93–102CrossRefGoogle Scholar
  43. 43.
    Fernández-Rodríguez MJ, Rincón B, Fermoso FG, Jiménez AM, Borja R (2014) Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Bioresour Technol 157:263–269CrossRefGoogle Scholar
  44. 44.
    Raposo F, Borja R, Martín MA, De la Rubia MA, Rincón B (2009) Influence of inoculum- substrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: process stability and kinetic evaluation. Chem Eng J 149:70–77CrossRefGoogle Scholar
  45. 45.
    Patil JH, Raj MA, Muralidhara PL, Desai SM, Mahadeva Raju GK (2012) Kinetics of anaerobic digestion of water hyacinth using poultry litter as inoculum. Int J Environ Sci Dev 32:94–98.  https://doi.org/10.7763/IJESD.2012.V3.195 CrossRefGoogle Scholar
  46. 46.
    Nopharatana A, Pullammanappallil P, Clarke WP (2007) Kinetic and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag 27:595–603CrossRefGoogle Scholar
  47. 47.
    Chynoweth DP, Pullammanappallil P (1996) Anaerobic digestion of municipal solid wastes. In: Palmisano BR, Barlaz ÉD (eds) Florida, department of agricultural and biological engineering. CRC Press, Inc, Boca RatonGoogle Scholar
  48. 48.
    Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Xinyua J (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102:9395–9402CrossRefGoogle Scholar
  49. 49.
    Budiyono B, Widiasa IN, Johari S, Sunarso S (2010) Increasing biogas production rate from cattle manure using rumen fluid as inoculums. Int J Basic Appl Sci 10(11):68–75Google Scholar
  50. 50.
    Budiyono B, Syaichurrozi I, Sumardiono S (2014) Kinetic model of biogas yield production from vinasse at various initial pH: comparison between modified gompertz model and first order kinetic model. Res J Appl Sci Eng Technol 7(113):2798–2805Google Scholar
  51. 51.
    Siles JA, Serrano A, Martín A, Martín MA (2013) Biomethanization of waste derived from strawberry processing: advantages of pretreatment. J Clean 42:190–197.  https://doi.org/10.1016/j.jclepro.2012.11.012 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Renewable Energy and Environment Laboratory, Faculty of Science-KenitraIbnTofail UniversityKenitraMorocco
  2. 2.Process Engineering and Agro-resources Laboratory, Faculty of Sciences-KenitraIbnTofail UniversityKenitraMorocco
  3. 3.Faculty of SciencesIBN TOFAIL UniversityKenitraMorocco

Personalised recommendations