Advertisement

Potential use of waste cockle shell as filler for thermoplastic composite

  • Yamuna MunusamyEmail author
  • Sumathi Sethupathi
  • Chi Hong Choon
ORIGINAL ARTICLE
  • 2 Downloads

Abstract

Cockle shell (CS) is a food-based solid waste. CS has no economic value and mostly dumped in landfills without prior treatment. This paper presents the results on the feasibility study of CS as a filler to produce thermoplastic composites. CS contains high amount of calcium carbonate. At present, precipitated calcium carbonate from limestone is used as filler in polymer industry. Thus, it is foreseen that CS could substitute the usage of limestone and indirectly preserve our natural limestone from destruction. CS [10–50 parts of thermoplastic polymer (pphr)] was used as filler to produce low-density polyethylene (LDPE) and LDPE/corn starch composites. Readings of Young modulus, thermal decomposition temperatures and crystallinity of all the composites were higher compared to pure LDPE. Tensile strength of the composite increased compared to pure LDPE at 10 pphr loading. Weight loss of the thermoplastic composites filled with CS in soil burial test indicates the potential of partial biodegradability of the composites after its service life. In future works, surface treatment of CS with suitable chemicals could be carried out to enhance the interaction between CS and LDPE matrix.

Keywords

Cockle shell Calcium carbonate Polymer Filler Composite Polyethylene 

Notes

References

  1. 1.
    Bonk F, Bastidas-Oyanedel J-R, Schmidt JE (2015) Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation—economic and energy assessment. Waste Manag 40:82–91.  https://doi.org/10.1016/j.wasman.2015.03.008 CrossRefGoogle Scholar
  2. 2.
    Campuzano R, Gonzalez-Martinez S (2016) Characteristic of the organic fraction of municipal solid waste and methane production: a review. Waste Manag 54:3–12.  https://doi.org/10.1016/j.wasman.2016.05.016 CrossRefGoogle Scholar
  3. 3.
    Martinez-Valdez FJ, Martinez-Ramirez C, Martinez-Montiel L, Favela-Torres E, Soto-Cruz NO, Ramirez-Vives F, Saucedo-Castaneda G (2015) Rapid mineralization of the organic fraction of municipal solid waste. Bioresour Technol 180:112–118.  https://doi.org/10.1016/j.biortech.2014.12.083 CrossRefGoogle Scholar
  4. 4.
    Kader SASA, Yin C-Y, Sulaiman MR, Chen X, El-Harbawi M (2013) Incineration of municipal solid waste in Malaysia: salient issues, policies and waste-to energy initiatives. Renew Sustain Energy Rev 24:181–186.  https://doi.org/10.1016/j.rser.2013.03.041 CrossRefGoogle Scholar
  5. 5.
    Mohamed M, Yusup S, Maitra S (2012) Decomposition study of calcium carbonate in cockle shell. J Eng Sci Technol 7:1–10Google Scholar
  6. 6.
    Izura SN, Hooi TK. Shaping the future of cockle industry in Malaysia. Maritime Institute of Malaysia. http://www.seafdec.org.my. Accessed 16 Nov 2017
  7. 7.
    Mohamed M, Rashidi NA, Yusup S, Lee KT, Rashid U, Ali RM (2012) Effects of experimental variables on conversion of cockle shell to calcium oxide using thermal gravimetric analysis. J Clean Prod 37:394–397.  https://doi.org/10.1016/j.jclepro.2012.07.050 CrossRefGoogle Scholar
  8. 8.
    Awang-Hazmi AJ, Zuki ABZ, Noordin MM, Jalila A, Norimah Y (2007) Mineral composition of the cockle (Anadara granosa) shells of west coast of peninsular Malaysia and it’s potential as biomaterial for use in bone repair. J Anim Vet Adv 6:591–594Google Scholar
  9. 9.
    Kamba AS, Ismail M, Tengku Ibrahim TA, Zakaria ZAB (2013) In vitro ultrastructural changes of MCF-7 for metastasise bone cancer and induction of apoptosis via mitochondrial cytochrome C released by CaCO3/Dox nanocrystals. J Nano 2014:1–9.  https://doi.org/10.1155/2014/391869 Google Scholar
  10. 10.
    Liu C, Luo YF, Jia ZX, Zhong BC, Li SQ, Guo BC, Jia DM (2011) Enhancement of mechanical properties of poly(vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett 5:591–603.  https://doi.org/10.3144/expresspolymlett.2011.58 CrossRefGoogle Scholar
  11. 11.
    Teir S, Eloneva S, Zevenhoven R (2005) Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Convers Manag 46:2954–2979.  https://doi.org/10.1016/j.enconman.2005.02.009 CrossRefGoogle Scholar
  12. 12.
    Lertwattanaruk P, Makul N, Siripattarapravat C (2012) Utilization of ground waste seashells in cement mortars for masonry and plastering. J Environ Manag 111:133–141.  https://doi.org/10.1016/j.jenvman.2012.06.032 CrossRefGoogle Scholar
  13. 13.
    Motamedi S, Shamshirband S, Hashim R, Petkovic D, Roy C (2015) Estimating unconfined compressive strength of cockle shell–cement–sand mixture using soft computing methodologies. Eng Struct 98:49–58.  https://doi.org/10.1016/j.engstruct.2015.03.070 CrossRefGoogle Scholar
  14. 14.
    Hussein A, Sultan A, Matoq AQ (2014) Study the effect of adding powder walnut shells on the mechanical properties and the flame resistance for low density polyethylene (LDPE). Int J Sci Technol 3:18–22Google Scholar
  15. 15.
    Shuhadah S, Supri AG (2009) Portland cement mortar composite with partial sand replacement by eggshell particles. J Phys Sci 20:87–98.  https://doi.org/10.4236/ojinm.2014.44007 Google Scholar
  16. 16.
    Li HY, Tan YQ, Zhang L, Zhang YX, Song YH, Ye Y, Xia MS (2012) Preparation, characterization, and antibacterial activity of shell waste loaded with silver. J Hazard Mater 217–218:256–262.  https://doi.org/10.1007/s10853-013-7683-0 CrossRefGoogle Scholar
  17. 17.
    Murugan S, Munusamy Y, Muniandy M, Ismail H (2018) Development of HDPE-modified eggshell composite. Polym Compos 39:1630–1637.  https://doi.org/10.1002/pc.24108 CrossRefGoogle Scholar
  18. 18.
    Yao ZT, Chen T, Li HY, Xia MS, Ye Y, Zheng H (2013) Mechanical and thermal properties polypropylene (PP) composites filled with modified shell waste. J Hard Mater 262:212–217.  https://doi.org/10.1016/j.jhazmat.2013.08.062 CrossRefGoogle Scholar
  19. 19.
    Atuanya CU, Aigbodian VS, Obiorah SO, Kchaou M, Elleuch R (2016) Empirical models for estimating the mechanical and morphological properties of recycle low density polyethylene/snail shell bio-composites. J Assoc Arab Univ Basic Appl Sci 21:45–52.  https://doi.org/10.1016/j.jaubas.2015.01.001 Google Scholar
  20. 20.
    Yao Z, Ge L, Ji X, Tang J, Xia M, Xi Y (2015) Surface studies of bivalve shell waste by IGC technique: probing its significant application in polymer industry. J Alloy Compd 621:389–395.  https://doi.org/10.1016/j.jallcom.2014.10.017 CrossRefGoogle Scholar
  21. 21.
    Phua YJ, Lau NS, Sudesh K, Chow WS, Mohd Ishak ZA (2012) Biodegradability studies of poly(butylenes succinate)/organo-montmorillonite nanocomposites under control compost soil condition: effect of clay loading and compatibiliser. Polym Degrad Stab 97:1345–1354.  https://doi.org/10.1016/j.polymdegradstab.2012.05.024 CrossRefGoogle Scholar
  22. 22.
    Baskaran R, Sarojadevi M, Vijayakumar CT (2011) Mechanical and thermal properties of unsaturated polyester/calcium carbonate nanocomposites. J Reinf Plast Compos 30:1549–1556.  https://doi.org/10.1177/0731684411424630 CrossRefGoogle Scholar
  23. 23.
    Henry DG, Watson JS, John CM (2017) Assessing and calibrating the ATR-FTIR approach as a carbonate rock characterization tool. Sediment Geol 347:36–52.  https://doi.org/10.1016/j.sedgeo.2016.07.003 CrossRefGoogle Scholar
  24. 24.
    Singh M, Kumar SV, Waghmere SA, Sabale PD (2016) Aragonite–vaterite–calcite: polymorphs of CaCO3 in 7th century CE lime plasters of Alampur group of temples, India. Constr Build Mater 112:386–397.  https://doi.org/10.1016/j.conbuildmat.2016.02.191 CrossRefGoogle Scholar
  25. 25.
    Grunenwald A, Keyser C, Sautereau AM, Crubezy E, Ludes B, Drouet C (2014) Revisiting carbonate quantification in apatite (bio) minerals: a validated FTIR methodology. J Archaeol Sci 49:134–141.  https://doi.org/10.1016/j.jas.2014.05.004 CrossRefGoogle Scholar
  26. 26.
    Gao W, Man X, Liu Y, Wang Z, Zhu Y (2013) Effect of calcium carbonate on PET physical properties and thermal stability. Powder Technol 244:45–51.  https://doi.org/10.1016/j.powtec.2013.04.008 CrossRefGoogle Scholar
  27. 27.
    Feng C, Liang M, Jiang J, Huang J, Liu H (2016) Preparation and characterization of oligomeric char forming agent and its effect on the thermal degradation and flame retardant properties of LDPE with ammonium polyphosphate. J Anal Appl Pyrolysis 119:75–86.  https://doi.org/10.1016/j.jaap.2016.03.015 CrossRefGoogle Scholar
  28. 28.
    Mahdieh Z, Bagheri R, Eslami M, Amiri M, Shokrgozar MA, Merhjoo M (2016) Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering. Mater Sci Eng C 69:301–310.  https://doi.org/10.1016/j.msec.2016.06.043 CrossRefGoogle Scholar
  29. 29.
    Peres AM, Pires RR, Orefie RL (2016) Evaluation on the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr Polym 136:210–215.  https://doi.org/10.1016/j.carbpol.2015.09.047 CrossRefGoogle Scholar
  30. 30.
    Yao ZT, Chen T, Li HY, Xia MS, Ye Y, Zheng H (2013) Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. J Hazard Mater 262:212–217Google Scholar
  31. 31.
    Espinosa KR, Castillo LA, Barbosa SE (2016) Blown nanocomposite films from polypropylene and talc. Influence of talc nanoparticles on biaxial properties. Mater Des 111:25–35Google Scholar
  32. 32.
    Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643Google Scholar
  33. 33.
    Luo X, Li J, Lin X (2012) Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films. Carbohydr Polym 90(4):1595–1600Google Scholar
  34. 34.
    Fuad MYA, Hanim H, Zarina R, MohdIshak ZA, Hassan A (2010) Polypropylene/calcium carbonate nanocomposites—effects of processing techniques and maleated polypropylene compatibiliser. Exp Polym Lett 4:611–620.  https://doi.org/10.3144/expresspolymlett.2010.76 CrossRefGoogle Scholar
  35. 35.
    Pedroso AG, Rosa DS (2005) Biocomposites: influence of matrix nature and additives on the properties and biodegradation behaviour. In: Biodegradation, chapter 16. In Tech Open.  https://doi.org/10.5772/56290
  36. 36.
    Bootklad M, Kaewtatip K (2013) Biodegradation of thermoplastic starch/eggshell powder composites. Carbohydr Polym 97:315–320.  https://doi.org/10.1016/j.carbpol.2013.05.030 CrossRefGoogle Scholar
  37. 37.
    Abdolmohammadi S, Siyamak S, Ibrahim NA, Wan Yunus WMD, AbRahman MZ, Azizi S, Fatehi A (2012) Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles. Int J Mol Sci 13:4508–4522.  https://doi.org/10.3390/ijms13044508 CrossRefGoogle Scholar
  38. 38.
    Chiu F-C, Lai S-M, Ti K-T (2009) Characterization and comparison of metallocene-catalyzed polyethylene/thermoplastic starch blends and nanocomposites. Polym Test 28:243–280.  https://doi.org/10.1016/j.polymertesting.2008.11.012 CrossRefGoogle Scholar
  39. 39.
    Sarbetzadeh M, Bagheri R, Masoomi M (2014) Effect of organomodified montmorillonite concentration on tensile and flow properties of low-density polyethylene–thermoplastic corn starch blends. J Thermoplast Compos 27:1022–1036CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Yamuna Munusamy
    • 1
    Email author
  • Sumathi Sethupathi
    • 1
  • Chi Hong Choon
    • 1
  1. 1.Faculty of Engineering and Green TechnologyUniversiti Tunku Abdul RahmanKamparMalaysia

Personalised recommendations