Journal of Material Cycles and Waste Management

, Volume 20, Issue 4, pp 2150–2162 | Cite as

Evaluation of compositional characteristics of organic waste shares in municipal solid waste in fast-growing metropolitan cities of India

  • Christopher J. SpeierEmail author
  • Moni M. Mondal
  • Dirk Weichgrebe


India currently has the second largest urban population worldwide, while facing an increasing burden on its urban solid waste infrastructure. To develop sustainable approaches for solid waste management in Indian cities, detailed information on urban and suburban waste characteristics are fundamental. A comprehensive municipal solid waste (MSW) analysis for the city of Bangalore showed that organic waste (OFMSW) shares in urban household waste amount 59.0, 63.3 and 59.2% in low-density, medium-density and high-density population areas, respectively. Urban litter spot (LS) and street sweeping waste had comparatively lower OFMSW shares of 57.1 and 51.9%. In suburban LS, OFMSW shares were the lowest with 47.5%. With a confidence interval of 95%, the statistical analysis revealed that urban household and LS waste have the same source of generation. Screening sizes of 20, 60 and 80 mm were found to be adequate for the urban MSW. The chemical analysis showed that all investigated waste streams do not comply with the Indian heavy metal standards for compost, with the highest pollution level post-rotting found in suburban OFMSW with Cr exceeding the Indian standards by 100%, Cu by 395% and Pb by 26%.


Municipal solid waste Solid waste characterisation Organic waste analysis Waste analysis Waste management Data quality 


  1. 1.
    United Nations (UN), Department of Economic and Social Affairs, Population Division (2015) World urbanization prospects: the 2014 revision, (ST/ESA/SER.A/366). Accessed 02 Jan 2018
  2. 2.
    Annepu R (2012) Sustainable solid waste management in India. Columbia University in the City of New York. Accessed 05 June 2017
  3. 3.
    Press Information Bureau (PIB), Ministry of Environment and Forests and Government of India (2016) Solid waste management rules revised after 16 years; Rules Now Extend to Urban and Industrial Areas, Javadekar. Accessed 06 Jan 2016
  4. 4.
    Akhtar MN (2014) Prospective assessment for long-term impact of excessive solid waste generation on the environment. Int J Adv Earth Environ Sci 2(2):39–45Google Scholar
  5. 5.
    Sharholy M, Ahmad K, Mahmood G, Trivedi R (2008) Municipal solid waste management in Indian cities—a review. Waste Manag 28:459–467. CrossRefGoogle Scholar
  6. 6.
    Kolekar KA, Hazra T, Chakrabarty SN (2017) Prediction of municipal solid waste generation for developing countries in temporal scale: a fuzzy inferences system approach. Glob NEST J 19(3):511–520CrossRefGoogle Scholar
  7. 7.
    Central Pollution Control Board (CPCB), Ministry of Environment, Forests and Climate Change, Government of India (2016) Consolidated Annual Review Report On Implementation Of Municipal Solid Wastes (Management And Handling) Rules, 2000. Annual Review Report: 2014-15. April 2016. Accessed 06 Dec 2016
  8. 8.
    Banerjee P (2016) ‘Gone to waste: how India is drowning in garbage’, Hindustan Times, 09 February. Accessed 31 Jan 2017
  9. 9.
    Mani S, Singh S (2016) Sustainable municipal solid waste management in india: a policy agenda. Procedia Environ Sci 35:150–157. CrossRefGoogle Scholar
  10. 10.
    Karak T, Bhagat R, Bhattacharyya P (2012) Municipal solid waste generation, composition, and management: the world scenario. Crit Rev Environ Sci Technol 42(15):1509–1630. CrossRefGoogle Scholar
  11. 11.
    Zhang D, Tan S, Gersberg R (2010) Municipal solid waste management in China: status, problems and challenges. J Environ Manag 91(8):1623–1633. CrossRefGoogle Scholar
  12. 12.
    Speier C, Mondal M, Weichgrebe D (2018) Data reliability of solid waste analysis in Asias newly industrialized countries. Int J Environ Waste Manag 22(1–4) (in press) Google Scholar
  13. 13.
    Sharma A, Ganguly R, Gupta AK (2018) Matrix method for evaluation of existing solid waste management system in Himachal Pradesh, India. J Mater Cycles Waste Manag. CrossRefGoogle Scholar
  14. 14.
    Rana R, Ganguly R, Gupta AK (2018) Physico-chemical characterization of municipal solid waste from Tricity region of Northern India: a case study. J Mater Cycles Waste Manag 20:678–689. CrossRefGoogle Scholar
  15. 15.
    Scaglia B, Orzi V, Artola A, Font X, Davoli E, Sanchez A, Adani F (2011) Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Biores Technol 102(7):4638–4645. CrossRefGoogle Scholar
  16. 16.
    Komilis DP, Ham RK, Park JK (2004) Emission of volatile organic compounds during composting of municipal solid wastes. Water Res 38(7):1707–1714. CrossRefGoogle Scholar
  17. 17.
    Westerman PW, Bicudo JR (2005) Management considerations for organic waste use in agriculture. Biores Technol 96(2):215–221. CrossRefGoogle Scholar
  18. 18.
    Feng SJ, Gao KW, Chen YX, Li Y, Zhan LM, Chen HX (2017) Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Manag 63:354–365. CrossRefGoogle Scholar
  19. 19.
    Zekkos D, Vlachakis V, Athanasopoulos GA (2014) The 2010 Xerolakka landfill slope Instability. Environ Geotech 1(1):56–65. CrossRefGoogle Scholar
  20. 20.
    Ministry of Environment, Forest and Climate Change (MoEFCC) (2016) Indian Solid Waste Management Rules (SWM). Notification. New Delhi, the 8th April, 2016. The Gazette of India. REGD. NO. D. L.-33004/99Google Scholar
  21. 21.
    Gómez G, Meneses M, Ballinas L, Castells F (2008) Characterization of urban solid waste in Chihuahua, Mexico. Waste Manag 28:2465–2471. CrossRefGoogle Scholar
  22. 22.
    Nordtest (1995) Solid Waste, Municipal Sampling And Characterisation, NT ENVIR 001, Approved 1995-05. Espoo, Finland.,%20municipal_Sampling%20and%20characterisation_Nordtest%20Method.pdf. Accessed 31 Sept 2017
  23. 23.
    SENES Consultants Limited (SENES) (1999) Recommended Waste Characterization Methodology For Direct Waste Analysis Studies In Canada, PN 1497, Report Prepared for: CCME Waste Characterization Sub-Committee, April 30, 1999. Accessed 01 Feb 2018
  24. 24.
    Thomanetz E (2002) Das Märchen von der repräsentativen Abfallprobe. Müll Abfall 3:136–142Google Scholar
  25. 25.
    Environmental Protection Agency (EPA), United States of America (2002) RCRA Waste Sampling Draft Technical Guidance. Planning, Implementation and Assessment, Office of Solid Waste. Accessed 01 Feb 2018
  26. 26.
    American Society for Testing and Materials (2003) ASTM D5231-92: Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid WasteGoogle Scholar
  27. 27.
    European Commission (EC) (2004) Methodology for analysis of Solid Waste (SWA-Tool) User Version. iC consulenten ZT Gmbh, AustriaGoogle Scholar
  28. 28.
    Sharma M, McBean E (2007) A methodology for solid waste characterization based on diminishing marginal returns. Waste Manag 27:337–344. CrossRefGoogle Scholar
  29. 29.
    Zwisele B (2007) Probenahmemethoden für die Bestimmung von Menge und Zusammensetzung fester Abfälle. In: Bilitewski B, Quicker P, Schnurer H, Zeschmar-Lahl B (eds) Müll und Abfall, Chap. 1661, Delivery 05/2005, vol 2. Book 2, Erich Schmidt, Berlin, pp 1–25Google Scholar
  30. 30.
    Weichgrebe D, Speier C, Mondal M (2017) Scientific Approach for Municipal Solid Waste Characterization. In: Goel S (ed) Advances in solid and hazardous waste management, 1st edn. Capital Publishing Company, New Delhi, pp 63–96Google Scholar
  31. 31.
    Schultz P, Oskamp S, Mainieri T (1995) Who recycles and when? A review of personal and situational factors. J Environ Psychol 15:105–121. CrossRefGoogle Scholar
  32. 32.
    Dennison G, Dodd V, Whelan B (1996) A socio-economic based survey of household waste characteristics in the city of Dublin, Ireland. II. Waste quantities. Res Conserv Recycl 17:245–257. CrossRefGoogle Scholar
  33. 33.
    Medina M (1997) Effect of income on municipal solid waste generation rates for countries of varying levels of economic development: a model. J Solid Waste Technol Manag 24(3):149–155Google Scholar
  34. 34.
    Ojeda Benítez S, Lozano-Olvera G, Adalberto Morelos R, Armijo de Vega C (2008) Mathematical modeling to predict residential solid waste generation. Waste Manag 28:8–12. CrossRefGoogle Scholar
  35. 35.
    Purcell M, Magette W (2009) Prediction of household and commercial BMW generation according to socio-economic and other factors for the Dublin region. Waste Manag 29:1237–1250. CrossRefGoogle Scholar
  36. 36.
    Thanh N, Matsui Y, Fujiwara T (2010) Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. J Environ Manag 91:2307–2321. CrossRefGoogle Scholar
  37. 37.
    Central Pollution Control Board (CPCB) (2000) Status of Solid Waste Generation, Collection, Treatment and Disposal in Metrocities. In: CUPS/46/1999–2000.” Central Pollution Control Board (CPCB), Government of India, New Delhi, 2000, SeriesGoogle Scholar
  38. 38.
    Kumar S, Bhattacharyya JK, Vaidya AN, Chakrabarti T, Devotta S, Akolkar AB (2009) Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: an insight. Waste Manag 29(2):883–895. CrossRefGoogle Scholar
  39. 39.
    Chattopadhyay S, Dutta A, Ray S (2009) Municipal solid waste management in Kolkata, India—a review. Waste Manag 29:1449–1458. CrossRefGoogle Scholar
  40. 40.
    Katiyar R, Suresh S, Sharma A (2013) Characterisation of municipal solid waste generated by the city of Bhopal, India. Int J ChemTech Res 5(2):623–628Google Scholar
  41. 41.
    Srivastava R, Krishna V, Sonkar I (2014) Characterization and management of municipal solid waste: a case study of Varanasi city, India. Int J Curr Res Acad Rev 2(8):10–16Google Scholar
  42. 42.
    Tripathi D, Shukla J (2016) Projection and quantification of municipal solid waste management in Bhopal city M.P. India. Int J Sci Eng Appl Sci (IJSEAS) 2(1):189–194Google Scholar
  43. 43.
    Bhawan A (2006) Detail Project Report (DPR) for Strengthening Primary and Secondary Solid Waste Management in the City, Rajkot Municipal Corporation, No.: RMC/JnNURM/SWM01/0511Google Scholar
  44. 44.
    Suthar S, Singh P (2015) Household solid waste generation and composition in different family size and socio-economic groups: a case study. Sustain Cities Soc 14:56–63. CrossRefGoogle Scholar
  45. 45.
    Rana R, Ganguly R, Gupta AK (2017) Evaluation of solid waste management in satellite Towns of Mohali and Panchkula–India. J Solid Waste Technol Manag 43(4):280–294. CrossRefGoogle Scholar
  46. 46.
    Kumar N, Goel S (2008) Characterization of municipal solid waste (MSW) and a proposed management plan for Kharagpur, West Bengal, India. Res Conserv Recycl 53:166–174. CrossRefGoogle Scholar
  47. 47.
    Central Public Health and Environmental Engineering Organisation (CPHEEO) (2016) Municipal Solid Waste Management Manual. Part II: The Manual. Swachh Bharat Mission, Ministry of Urban Development, Government of India, New DelhiGoogle Scholar
  48. 48.
    The Forward Foundation (2015) SWM Quarterly Report—Bengaluru West Zone. Accessed 08 Aug 2015
  49. 49.
    India Online Pages (IOP) (2016) Population of Bangalore 2016. Accessed 22 Sept 2016
  50. 50.
    Zwisele B (1998) Statistische Gesichtspunkte bei der Auswahl von Stichprobeneinheiten für Hausmülluntersuchungen. Müllhandbuch, Seriennummer 1713, pp 1–18Google Scholar
  51. 51.
    Landesumweltamt Brandenburg (LUABB), Referat Öffentlichkeitsarbeit (1998) Richtlinie für die Durchführung von Untersuchungen zur Bestimmung der Menge und Zusammensetzung fester Siedlungsabfälle im Land Brandenburg. Teil I. Fachbeiträge des Landesumweltamtes. Titelreihe Nr. 34Google Scholar
  52. 52.
    LAGA (2016) LAGA-Methodensammlung—Abfalluntersuchung. Version 3.0. Stand: 14. Oktober 2016. Bund/Länder-Arbeitsgemeinschaft AbfallGoogle Scholar
  53. 53.
    ASTM (2014) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM D5373. ASTM International, West ConshohockenGoogle Scholar
  54. 54.
    ISI (1985) Methods of sampling and test for fertilizers, Part 3. Indian Standards Institution, New DelhiGoogle Scholar
  55. 55.
    APHA (2012) Standard Methods for the Examination of Water and Wastewater, 22nd edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DCGoogle Scholar
  56. 56.
    Saha JK, Panwar N, Singh MV (2010) An assessment of municipal solid waste compost quality produced in different cities of Indian in the perspective of developing quality control indices. Waste Manag 30:192–201. CrossRefGoogle Scholar
  57. 57.
    National Environmental Engineering Research Institute (NEERI) (2009) Assessment of Quality of Compost from Waste. Processing Plants of Calicut Delhi and Jalandhar, NagpurGoogle Scholar
  58. 58.
    ECN (2014) ECN-QAS—European Quality Assurance Scheme for Compost and Digestate. European Compost Network ECN e.VGoogle Scholar
  59. 59.
    BioAbfV (2017) Bioabfallverordnung in der Fassung der Bekanntmachung vom 4. April 2013 (BGBl. I S. 658), die zuletzt durch Artikel 3 Absatz 2 der Verordnung vom 27. September 2017 (BGBl. I S. 3465) geändert worden ist. Government of Germany. Accessed 02 Jan 2018
  60. 60.
    BSI (2011) PAS 100:2011—Specification for composted materials. British Standards Institution, London. Accessed 11 Feb 2018
  61. 61.
    Amir S, Hafidi M, Merlina G, Revel J (2005) Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere 59:801–810. CrossRefGoogle Scholar
  62. 62.
    Bruhat Bangalore Mahanagara Palike (BBMP) (2008) Solid Waste Management in Bruhat Bangalore Mahanagara Palike (BBMP). Accessed 02 Dec 2015
  63. 63.
    Sudhir V, Srinivasan G, Muraleedharan V (1997) Planning for sustainable solid waste in Urban India. Syst Dynam Rev 13:223–246.<223::AID-SDR127>3.0.CO;2-QCrossRefGoogle Scholar
  64. 64.
    Miezah K, Obiri-Danso K, Kádár Z, Fei-Baffoe B, Mensah M (2015) Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Manag 46:15–27. CrossRefGoogle Scholar
  65. 65.
    Tukey J (1949) Comparing Individual Means in the Analysis of Variance. Int Biom Soc 5(2):99–114MathSciNetGoogle Scholar
  66. 66.
    Tukey J (1953) The problem of multiple comparisons. Unpublished report. Princeton University, USAGoogle Scholar
  67. 67.
    Abdi H, Williams L (2010) Tukey’s honestly significant difference (HSD) test. In: Salkind N (ed) Encyclopedia of research design. Sage Publications, Thousand OaksGoogle Scholar
  68. 68.
    Levene H (1960) Robust tests for equality of variances. In: Olkin I (ed) Contributions to probability and statistics. Stanford University Press, Palo AltoGoogle Scholar
  69. 69.
    Ayalon O, Avnimelech Y, Shechter M (2001) Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation. Environ Manag 27(5):697–704. CrossRefGoogle Scholar
  70. 70.
    Hargreaves J, Adl M, Warman P (2008) A review of the use of composted municipal solid waste in agriculture. Agr Ecosyst Environ 123(1–3):1–14. CrossRefGoogle Scholar
  71. 71.
    Gillett J (1992) Issues in risk assessment of compost from municipal solid waste: occupational health and safety, public health, and environmental concerns. Biomass Bioenerg 3(3–4):145–162. CrossRefGoogle Scholar
  72. 72.
    García-Gil J, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32(13):1907–1913. CrossRefGoogle Scholar
  73. 73.
    Smith S (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156. CrossRefGoogle Scholar
  74. 74.
    Golueke C (1972) Composting—a study of the process and its principles. University of California, BerkeleyGoogle Scholar
  75. 75.
    Haug R (1993) The practical handbook of compost engineering. Lewis Publishers, LondonGoogle Scholar
  76. 76.
    Lens P, Hamelers B, Hoitink H, Bidlingmaier W (2004) Resource recovery and reuse in organic solid waste management. IWA Publishing, The Netherlands, p 62Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Christopher J. Speier
    • 1
    Email author
  • Moni M. Mondal
    • 1
  • Dirk Weichgrebe
    • 1
  1. 1.Institute for Sanitary Engineering and Waste Management (ISAH)Leibniz Universität HannoverHannoverGermany

Personalised recommendations