Skip to main content
Log in

Physical containment of municipal solid waste incineration bottom ash by accelerated carbonation

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Accelerated carbonation of municipal solid waste incineration residues is effective for immobilizing heavy metals. In this study, the contribution of the physical containment by carbonation to immobilization of some heavy metals was examined by some leaching tests and SEM–EDS analysis of untreated, carbonated, and milled bottom ash after carbonation that was crushed with a mortar to a mean particle size of approximately 1 μm. The surface of carbonated bottom ash particles on SEM images seemed mostly coated, while there were uneven micro-spaces on the surface of the untreated bottom ash. Results of Japan Leaching Test No. 18 (JLT18) for soil pollution showed that milling carbonated bottom ash increased the pH and EC. The leaching concentration of each element tended to be high for untreated samples, and was decreased by carbonation. However, after the milling of carbonated samples, the leaching concentration became high again. The immobilization effect of each element was weakened by milling. The ratio of physical containment effect to immobilization effects by accelerated carbonation was calculated using the results of JLT18. The ratio for each element was as follows: Pb: 13.9–69.0 %, Cu: 12.0–49.1 %, Cr: 24.1–99.7 %, Zn: 20.0–33.3 %, and Ca: 28.9–63.4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Autret E, Berthier F, Luszezanec A, Nicolas F (2007) Incineration of municipal and assimilated wastes in France: assessment of latest energy and material recovery performances. J Hazard Mater 139(3):569–574. doi:10.1016/j.jhazmat.2006.02.065

    Article  Google Scholar 

  2. Japan Ministry of the Environment (2012) Annual Report on Waste management in Japan (in Japanese)

  3. Tanaka N, Tojo Y, Matsuto T (2005) Past, present, and future of MSW landfills in Japan. J Mater Cycles Waste Manag 7(2):104–111. doi:10.1007/s10163-005-0133-6

    Article  Google Scholar 

  4. Kayabal K, Buluş G (2000) The usability of bottom ash as an engineering material when amended with different matrices. Eng Geol 56(3–4):293–303. doi:10.1016/S0013-7952(99)00097-6

    Article  Google Scholar 

  5. Kim YT, Do TH (2012) Effect of bottom ash particle size on strength development in composite geomaterial. Eng Geol 139–140:85–91. doi:10.1016/j.enggeo.2012.04.012

    Article  Google Scholar 

  6. Gerven TV, Keer EV, Arickx S, Jaspers M, Wauters G, Vandecasteele C (2005) Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Manag 25(3):291–300. doi:10.1016/j.wasman.2004.07.008

    Article  Google Scholar 

  7. Lin CF, Wu CH, Ho HM (2006) Recovery of municipal waste incineration bottom ash and water treatment sludge to water permeable pavement materials. Waste Manag 26(9):970–978. doi:10.1016/j.wasman.2005.09.014

    Article  Google Scholar 

  8. Izquierdo M, Querol X, Josa A, Vazquez E, López-Soler A (2008) Comparison between laboratory and field leachability of MSWI bottom ash as a road material. Sci Total Environ 389(1):10–19. doi:10.1016/j.scitotenv.2007.08.020

    Article  Google Scholar 

  9. Sakita S., Shimaoka T., Nishigaki M., Tanaka T. (2006) Carbonation treatment of lead in municipal solid waste incineration bottom ash for beneficial use. Cement and Concrete Science (Ed.), Extended abstracts of the First Int. Conf. on Accelerated Carbonation for Environ and Mater Eng., London, UK

  10. Lackner KS, Wendt CH, Butt DP, Joyce EL Jr, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170. doi:10.1016/0360-5442(95)00071-N

    Article  Google Scholar 

  11. Fernandez-Bertos M, Simons SJR, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112(3):193–205. doi:10.1016/j.jhazmat.2004.04.019

    Article  Google Scholar 

  12. Baciocchi R, Costa G, Bartolomeo DE, Polettini A, Pomi R (2009) The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues. Waste Manag 29(12):2994–3003. doi:10.1016/j.wasman.2009.07.012

    Article  Google Scholar 

  13. Muriithi GN, Petrik LF, Fatoba O, Gitari WM, Doucet FJ, Nel J, Nyale SM, Chuks PE (2013) Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. J Environ Manag 127:212–220. doi:10.1016/j.jenvman.2013.05.027

    Article  Google Scholar 

  14. Costa G, Baciocchi R, Polettini A, Pomi R, Hills CD, Carey PJ (2007) Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environ Monit Assess 135(1–3):55–75. doi:10.1007/s10661-007-9704-4

    Article  Google Scholar 

  15. Meima JA, Van der Weijden RD, Eighmy TT, Comans RNJ (2002) Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Appl Geochem 17(12):1503–1513. doi:10.1016/S0883-2927(02)00015-X

    Article  Google Scholar 

  16. Chaspoul FR, Le Droguene MF, Barban G, Rose JC, Gallice PM (2008) A role for adsorption in lead leachability from MSWI bottom ash. Waste Manag 28(8):1324–1330. doi:10.1016/j.wasman.2007.07.005

    Article  Google Scholar 

  17. Zomeren AV, Comans RNJ (2004) Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash. Environ Sci Technol 38(14):3927–3932. doi:10.1021/es035266v

    Article  Google Scholar 

  18. Su L, Guo G, Shi X, Zuo M, Niu D, Zhao A, Zhao Y (2013) Copper leaching of MSWI bottom ash co-disposed with refuse: effect of short-term accelerated weathering. Waste Manag 33(6):1411–1417. doi:10.1016/j.wasman.2013.02.011

    Article  Google Scholar 

  19. Maries A (1985) The activation of Portland cement by carbon dioxide. In: Proceedings of Conference in Cement and Concrete Sci Oxford, UK

  20. Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43(3):313–336. doi:10.1016/j.resconrec.2004.06.007

    Article  Google Scholar 

  21. García-González CA, Hidalgo A, Fraile J, López-Periago AM, Andrade C, Domingo C (2007) Porosity and water permeability study of supercritically carbonated cement pastes involving mineral additions. Ind Eng Chem Res 46(8):2488–2496. doi:10.1021/ie061571o

    Article  Google Scholar 

  22. Speiser C, Baumann T, Niessner R (2000) Morphological and chemical characterization of calcium-hydrate phases formed in alteration processes of deposited municipal solid waste incinerator bottom ash. Environ Sci Technol 34(23):5030–5037. doi:10.1021/es990739c

    Article  Google Scholar 

  23. Freyssinet P, Piantone P, Azaroual M, Itard Y, Clozel-Leloup B, Guyonnet D, Baubron JC (2002) Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manag 22(2):159–172. doi:10.1016/S0956-053X(01)00065-4

    Article  Google Scholar 

  24. Gunning PJ, Colin D, Hills CD, Carey PJ (2010) Accelerated carbonation treatment of industrial wastes. Waste Manag 30(6):1081–1090. doi:10.1016/j.wasman.2010.01.005

    Article  Google Scholar 

  25. Johannesson B, Utgenannt P (2001) Microstructural changes caused by carbonation of cement mortar. Cement Concrete Res 31(6):925–931. doi:10.1016/S0008-8846(01)00498-7

    Article  Google Scholar 

  26. Rendek E, Ducom G, Germain P (2006) Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater 128(1):73–79. doi:10.1016/j.jhazmat.2005.07.033

    Article  Google Scholar 

  27. Arickx S, Van Gerven T, Vandecasteele C (2006) Accelerated carbonation for treatment of MSWI bottom ash. J Hazard Mater 137(1):235–243. doi:10.1016/j.jhazmat.2006.01.059

    Article  Google Scholar 

  28. Bone BD, Knox K, Picken A, Robinson HD (2003) The effect of carbonation on leachate quality from landfilled municipal solid waste (MSW) incinerator residues. In: Proceedings of Sardinia 2003, Ninth International Waste Management Landfill Symposium (on CD-ROM)

  29. Chimenos JM, Fernández AI, Miralles L, Segarra M, Espiell F (2003) Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Manag 23(10):887–895. doi:10.1016/S0956-053X(03)00074-6

    Article  Google Scholar 

  30. Todorovic J, Ecke H (2006) Demobilisation of critical contaminants in four typical waste-to-energy ashes by carbonation. Waste Manag 26(4):430–441. doi:10.1016/j.wasman.2005.11.011

    Article  Google Scholar 

  31. Rendek E, Ducom G, Germain P (2007) Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Manag 27(10):1403–1407. doi:10.1016/j.wasman.2007.03.016

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Japan Society for the Promotion of Science (JSPS), Grant Number 21760420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Sakita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakita, S., Nishimura, K. Physical containment of municipal solid waste incineration bottom ash by accelerated carbonation. J Mater Cycles Waste Manag 18, 687–694 (2016). https://doi.org/10.1007/s10163-015-0369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-015-0369-8

Keywords

Navigation