Osteoclasts Modulate Bone Erosion in Cholesteatoma via RANKL Signaling

  • Ryusuke Imai
  • Takashi SatoEmail author
  • Yoriko Iwamoto
  • Yukiko Hanada
  • Mika Terao
  • Yumi Ohta
  • Yasuhiro Osaki
  • Takao Imai
  • Tetsuo Morihana
  • Suzuyo Okazaki
  • Kazuo Oshima
  • Daisuke Okuzaki
  • Ichiro Katayama
  • Hidenori Inohara
Research Article


Cholesteatoma starts as a retraction of the tympanic membrane and expands into the middle ear, eroding the surrounding bone and causing hearing loss and other serious complications such as brain abscess and meningitis. Currently, the only effective treatment is complete surgical removal, but the recurrence rate is relatively high. In rheumatoid arthritis (RA), osteoclasts are known to be responsible for bone erosion and undergo differentiation and activation by receptor activator of NF-κB ligand (RANKL), which is secreted by synovial fibroblasts, T cells, and B cells. On the other hand, the mechanism of bone erosion in cholesteatoma is still controversial. In this study, we found that a significantly larger number of osteoclasts were observed on the eroded bone adjacent to cholesteatomas than in unaffected areas, and that fibroblasts in the cholesteatoma perimatrix expressed RANKL. We also investigated upstream transcription factors of RANKL using RNA sequencing results obtained via Ingenuity Pathways Analysis, a tool that identifies relevant targets in molecular biology systems. The concentrations of four candidate factors, namely interleukin-1β, interleukin-6, tumor necrosis factor α, and prostaglandin E2, were increased in cholesteatomas compared with normal skin. Furthermore, interleukin-1β was expressed in infiltrating inflammatory cells in the cholesteatoma perimatrix. This is the first report demonstrating that a larger-than-normal number of osteoclasts are present in cholesteatoma, and that the disease involves upregulation of factors related to osteoclast activation. Our study elucidates the molecular basis underlying bone erosion in cholesteatoma.


cholesteatoma osteoclast fibroblast receptor activator of NF-κB ligand (RANKL) RNA sequencing IL-1β 



We would like to thank Dr. Hiroyuki Murota, Dr. Mari Kaneda, Dr. Saori Ochi, Dr. Takefumi Kamakura, and Dr. Yohei Maeda for the helpful discussions, and Ms. Yumiko Fujii and Ms. Sayaka Matsumura for research assistance.

Funding information

This work was supported by a JSPS KAKENHI Grant (nos. JP16K20242).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

10162_2019_727_MOESM1_ESM.xlsx (1.6 mb)
Supplementary Table 1 (XLSX 1645 kb)
10162_2019_727_MOESM2_ESM.xlsx (65 kb)
Supplementary Table 2 (XLSX 64 kb)


  1. Abramson M, Moriyama H, Huang CC (1984) Pathogenic factors in bone resorption in cholesteatoma. Acta Otolaryngol 97:437–442. CrossRefPubMedGoogle Scholar
  2. Akaogi J, Nozaki T, Satoh M, Yamada H (2006) Role of PGE2 and EP receptors in the pathogenesis of rheumatoid arthritis and as a novel therapeutic strategy endocrine. Metab Immune Disord Drug Targets 6:383–394. CrossRefGoogle Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bresnihan B et al (1998) Treatment of rheumatoid arthritis with recombinant human interleukin-1 receptor antagonist. Arthritis Rheum 41:2196–2204.<2196::Aid-art15>3.0.Co;2-2 CrossRefPubMedGoogle Scholar
  6. Chen AP et al (2015) Expression levels of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin are associated with middle ear cholesteatoma risk. Acta Otolaryngol 135:655–666. CrossRefPubMedGoogle Scholar
  7. Cheshire IM, Blight A, Ratcliffe WA, Proops DW, Heath DA (1991) Production of parathyroid-hormone-related protein by cholesteatoma cells in culture. Lancet 338:1041–1043CrossRefGoogle Scholar
  8. Chi Z, Wang Z, Liang Q, Zhu Y, du Q (2015) Induction of cytokine production in cholesteatoma keratinocytes by extracellular high-mobility group box chromosomal protein 1 combined with DNA released by apoptotic cholesteatoma keratinocytes. Mol Cell Biochem 400:189–200. CrossRefPubMedGoogle Scholar
  9. Chole RA (1984) Cellular and subcellular events of bone resorption in human and experimental cholesteatoma: the role of osteoclasts. Laryngoscope 94:76–95CrossRefGoogle Scholar
  10. Choy EH et al (2002) Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 46:3143–3150. CrossRefPubMedGoogle Scholar
  11. Cochran DL (2008) Inflammation and bone loss in periodontal disease. J Periodontol 79:1569–1576. CrossRefPubMedGoogle Scholar
  12. Demmer RT et al (2008) Transcriptomes in healthy and diseased gingival tissues. J Periodontol 79:2112–2124. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fujihara R et al (2014) Tumor necrosis factor-alpha enhances RANKL expression in gingival epithelial cells via protein kinase a signaling. J Periodontal Res 49:508–517. CrossRefPubMedGoogle Scholar
  14. Hamzei M et al (2003) Osteoclast stimulating and differentiating factors in human cholesteatoma. Laryngoscope 113:436–442. CrossRefPubMedGoogle Scholar
  15. Hienz SA, Paliwal S, Ivanovski S (2015) Mechanisms of bone resorption in periodontitis. J Immunol Res 2015:615486. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huang CC, Yi ZX, Yuan QG, Abramson M (1990) A morphometric study of the effects of pressure on bone resorption in the middle ear of rats. Am J Otolaryngol 11:39–43Google Scholar
  17. Iino Y, Hoshino E, Tomioka S, Takasaka T, Kaneko Y, Yuasa R (1983) Organic acids and anaerobic microorganisms in the contents of the cholesteatoma sac. Ann Otol Rhinol Laryngol 92:91–96. CrossRefPubMedGoogle Scholar
  18. Iwamoto Y et al (2016) Intercellular communication between keratinocytes and fibroblasts induces local osteoclast differentiation: a mechanism underlying cholesteatoma-induced bone destruction. Mol Cell Biol 36:1610–1620. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jeong JH, Park CW, Tae K, Lee SH, Shin DH, Kim KR, Park YW (2006) Expression of RANKL and OPG in middle ear cholesteatoma tissue. Laryngoscope 116:1180–1184. CrossRefPubMedGoogle Scholar
  20. Jung TT, Juhn SK (1988) Prostaglandins in human cholesteatoma and granulation tissue. Am J Otolaryngol 9:197–200Google Scholar
  21. Jung JY, Pashia ME, Nishimoto SY, Faddis BT, Chole RA (2004) A possible role for nitric oxide in osteoclastogenesis associated with cholesteatoma. Otol Neurotol 25:661–668CrossRefGoogle Scholar
  22. Kamakura T, Nadol JB Jr (2017) Evidence of osteoclastic activity in the human temporal bone. Audiol Neurootol 22:218–225. CrossRefPubMedGoogle Scholar
  23. Kim KW et al (2007) Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol Lett 110:54–64. CrossRefPubMedGoogle Scholar
  24. Kim HR, Kim KW, Kim BM, Jung HG, Cho ML, Lee SH (2014) Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheum 66:538–548. CrossRefGoogle Scholar
  25. Kobayashi H, Asano K, Kanai K, Suzaki H (2005) Suppressive activity of vitamin D3 on matrix metalloproteinase production from cholesteatoma keratinocytes in vitro. Mediat Inflamm 2005:210–215. CrossRefGoogle Scholar
  26. Koizumi H, Suzuki H, Ohbuchi T, Kitamura T, Hashida K, Nakamura M (2015) Increased permeability of the epithelium of middle ear cholesteatoma. Clin Otolaryngol 40:106–114. CrossRefPubMedGoogle Scholar
  27. Koizumi H, Suzuki H, Ikezaki S, Ohbuchi T, Hashida K, Sakai A (2016) Osteoclasts are not activated in middle ear cholesteatoma. J Bone Miner Metab 34:193–200. CrossRefPubMedGoogle Scholar
  28. Koizumi H et al (2017) Presence of osteoclasts in middle ear cholesteatoma: a study of undecalcified bone sections. Acta Otolaryngol 137:127–130. CrossRefPubMedGoogle Scholar
  29. Kramer A, Green J, Pollard J Jr, Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30:523–530. CrossRefPubMedGoogle Scholar
  30. Kuczkowski J, Kobierska-Gulida G, Izycka-Swieszewska E, Potocka M, Mikaszewski B, Sierszen W (2010) Molecular control of bone resorption in chronic otitis media with cholesteatoma. Otolaryngol Pol 64:219–224. CrossRefPubMedGoogle Scholar
  31. Kuczkowski J, Sakowicz-Burkiewicz M, Izycka-Swieszewska E, Mikaszewski B, Pawelczyk T (2011) Expression of tumor necrosis factor-alpha, interleukin-1alpha, interleukin-6 and interleukin-10 in chronic otitis media with bone osteolysis ORL. J Otorhinolaryngol Relat Spec 73:93–99. CrossRefGoogle Scholar
  32. Kuo CL, Shiao AS, Yung M, Sakagami M, Sudhoff H, Wang CH, Hsu CH, Lien CF (2015) Updates and knowledge gaps in cholesteatoma research. Biomed Res Int 2015:854024–854017. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Likus W et al (2016) Bacterial infections and osteoclastogenesis regulators in men and women with cholesteatoma arch. Immunol Ther Exp (Warsz) 64:241–247. CrossRefGoogle Scholar
  34. Lipsky PE, van der Heijde D, St Clair EW, Furst DE, Breedveld FC, Kalden JR, Smolen JS, Weisman M, Emery P, Feldmann M, Harriman GR, Maini RN, Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. N Engl J Med 343:1594–1602. CrossRefPubMedGoogle Scholar
  35. McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442. CrossRefPubMedGoogle Scholar
  36. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219. CrossRefGoogle Scholar
  37. Olszewska E, Wagner M, Bernal-Sprekelsen M, Ebmeyer J, Dazert S, Hildmann H, Sudhoff H (2004) Etiopathogenesis of cholesteatoma. Eur Arch Otorhinolaryngol 261:6–24. CrossRefPubMedGoogle Scholar
  38. Peek FA, Huisman MA, Berckmans RJ, Sturk A, Van Loon J, Grote JJ (2003) Lipopolysaccharide concentration and bone resorption in cholesteatoma. Otol Neurotol 24:709–713CrossRefGoogle Scholar
  39. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rehman MT, Hoyland JA, Denton J, Freemont AJ (1994) Age related histomorphometric changes in bone in normal British men and women. J Clin Pathol 47:529–534CrossRefGoogle Scholar
  41. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-α– and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Investig 111:821–831. CrossRefPubMedGoogle Scholar
  42. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, Tanaka S, Kodama T, Akira S, Iwakura Y, Cua DJ, Takayanagi H (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Si Y et al (2015) TLR4 drives the pathogenesis of acquired cholesteatoma by promoting local inflammation and bone destruction. Sci Rep 5:16683. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7:292–304. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Takayanagi H et al (2000) Involvement of receptor activator of nuclear factor kappa B ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 43:259–269.<259::Aid-Anr4>3.0.Co;2-W CrossRefPubMedGoogle Scholar
  46. Teitelbaum SL, Ross FP (2003) Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649. CrossRefPubMedGoogle Scholar
  47. Tomlin J, Chang D, McCutcheon B, Harris J (2013) Surgical technique and recurrence in cholesteatoma: a meta-analysis. Audiol Neurootol 18:135–142. CrossRefPubMedGoogle Scholar
  48. Uno Y, Saito R (1995) Bone resorption in human cholesteatoma: morphological study with scanning electron microscopy. Ann Otol Rhinol Laryngol 104:463–468. CrossRefPubMedGoogle Scholar
  49. Vitale RF, Ribeiro Fde A (2007) The role of tumor necrosis factor-alpha (TNF-alpha) in bone resorption present in middle ear cholesteatoma. Braz J Otorhinolaryngol 73:117–121. CrossRefPubMedGoogle Scholar
  50. Xie S, Xiang Y, Wang X, Ren H, Yin T, Ren J, Liu W (2016) Acquired cholesteatoma epithelial hyperproliferation: roles of cell proliferation signal pathways. Laryngoscope 126:1923–1930. CrossRefPubMedGoogle Scholar
  51. Yetiser S, Satar B, Aydin N (2002) Expression of epidermal growth factor, tumor necrosis factor-α, and interleukin-1α in chronic otitis media with or without cholesteatoma. Otol Neurotol 23:647–652. CrossRefPubMedGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2019

Authors and Affiliations

  • Ryusuke Imai
    • 1
  • Takashi Sato
    • 1
    Email author
  • Yoriko Iwamoto
    • 1
  • Yukiko Hanada
    • 1
  • Mika Terao
    • 2
  • Yumi Ohta
    • 1
  • Yasuhiro Osaki
    • 1
  • Takao Imai
    • 1
  • Tetsuo Morihana
    • 3
  • Suzuyo Okazaki
    • 4
  • Kazuo Oshima
    • 1
  • Daisuke Okuzaki
    • 5
  • Ichiro Katayama
    • 2
  • Hidenori Inohara
    • 1
  1. 1.Department of Otorhinolaryngology-Head and Neck SurgeryOsaka University Graduate School of MedicineOsakaJapan
  2. 2.Department of DermatologyOsaka University Graduate School of MedicineOsakaJapan
  3. 3.Department of Otorhinolaryngology-Head and Neck SurgeryHigashiosaka City Medical CenterOsakaJapan
  4. 4.Department of OtorhinolaryngologyOsaka City General HospitalOsakaJapan
  5. 5.Genome Information Research Center, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan

Personalised recommendations