Invertebrate Neuroscience

, 19:11 | Cite as

Pharmacological characterization of a homomeric nicotinic acetylcholine receptor formed by Ancylostoma caninum ACR-16

  • Shivani Choudhary
  • James G. Tipton
  • Melanie Abongwa
  • Matthew T. Brewer
  • Jeba Jesudoss Chelladurai
  • Nicole Musselman
  • Richard J. Martin
  • Alan P. RobertsonEmail author
Original Article


Parasitic nematode infections are treated using anthelmintic drugs, some of which target nicotinic acetylcholine receptors (nAChRs) located in different parasite tissues. The limited arsenal of anthelmintic agents and the prevalence of drug resistance imply that future defense against parasitic infections will depend on the discovery of novel targets and therapeutics. Previous studies have suggested that Ascaris suum ACR-16 nAChRs are a suitable target for the development of antinematodal drugs. In this study, we characterized the pharmacology of the Ancylostoma caninum ACR-16 receptor using two-electrode voltage-clamp electrophysiology. This technique allowed us to study the effects of cholinergic agonists and antagonists on the nematode nAChRs expressed in Xenopus laevis oocytes. Aca-ACR-16 was not sensitive to many of the existing cholinomimetic anthelmintics (levamisole, oxantel, pyrantel, and tribendimidine). 3-Bromocytisine was the most potent agonist (> 130% of the control acetylcholine current) on the Aca-ACR-16 nAChR but, unlike Asu-ACR-16, oxantel did not activate the receptor. The mean time constants of desensitization for agonists on Aca-ACR-16 were longer than the rates observed in Asu-ACR-16. In contrast to Asu-ACR-16, the A. caninum receptor was completely inhibited by DHβE and moderately inhibited by α-BTX. In conclusion, we have successfully reconstituted a fully functional homomeric nAChR, ACR-16, from A. caninum, a model for human hookworm infections. The pharmacology of the receptor is distinct from levamisole-sensitive nematode receptors. The ACR-16 homologue also displayed some pharmacological differences from Asu-ACR-16. Hence, A. caninum ACR-16 may be a valid target site for the development of anthelmintics against hookworm infections.


nAChR Hookworms Aca-ACR-16 Anthelmintic Xenopus oocyte 



This research was funded by NIH R21AI092185 to APR, NIH RO1AI047194 and the E. A. Benbrook Foundation for Pathology and Parasitology to RJM. We would like to thank Dr. Claude L. Charvet, INRA, Université Tours, Nouzilly, France for the generous gift of pTB207 vector.

Compliance with ethical standards

Conflict of interest

The authors declare that this work has no conflict of interest.


  1. Abongwa M, Buxton SK, Courtot E, Charvet CL, Neveu C, McCoy CJ et al (2016) Pharmacological profile of Ascaris suum ACR-16, a new homomeric nicotinic acetylcholine receptor widely distributed in Ascaris tissues. Br J Pharmacol 173(16):2463–2477. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abongwa M, Martin RJ, Robertson AP (2017) A brief review on the mode of action of antinematodal drugs. Acta Vet (Beogr) 67(2):137–152. CrossRefGoogle Scholar
  3. Aceves J, Erlij D, Martínez-Marañón R (1970) The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle. Br J Pharmacol 38(3):602–607CrossRefPubMedPubMedCentralGoogle Scholar
  4. Albonico M, Smith PG, Ercole E, Hall A, Chwaya HM, Alawi KS et al (1995) Rate of reinfection with intestinal nematodes after treatment of children with mebendazole or albendazole in a highly endemic area. Trans R Soc Trop Med Hyg 89(5):538–541CrossRefPubMedGoogle Scholar
  5. Albonico M, Bickle Q, Ramsan M, Montresor A, Savioli L, Taylor M (2003) Efficacy of mebendazole and levamisole alone or in combination against intestinal nematode infections after repeated targeted mebendazole treatment in Zanzibar. Bull World Health Organ 81(5):343–352PubMedPubMedCentralGoogle Scholar
  6. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aubry ML, Cowell P, Davey MJ, Shevde S (1970) Aspects of the pharmacology of a new anthelmintic: pyrantel. Br J Pharmacol 38(2):332–344CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baermann G (1917) A simple method for the detection of Ankylostomum (nematode) larvae in soil tests. Javasche Boekhandel & Drukkerij, BataviaGoogle Scholar
  9. Ballivet M, Alliod C, Bertrand S, Bertrand D (1996) Nicotinic acetylcholine receptors in the NematodeCaenorhabditis elegans. J Mol Biol 258(2):261–269. CrossRefPubMedGoogle Scholar
  10. Bartsch SM, Hotez PJ, Asti L, Zapf KM, Bottazzi ME, Diemert DJ et al (2016) The global economic and health burden of human hookworm infection. PLoS Negl Trop Dis 10(9):e0004922. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bennett A, Guyatt H (2000) Reducing intestinal nematode infection: efficacy of albendazole and mebendazole. Parasitol Today 16(2):71–74CrossRefPubMedGoogle Scholar
  12. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D et al (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367(9521):1521–1532. CrossRefPubMedGoogle Scholar
  13. Blaxter M (2000) Genes and genomes of Necator americanus and related hookworms. Int J Parasitol 30(4):347–355. CrossRefPubMedGoogle Scholar
  14. Boulin T, Gielen M, Richmond JE, Williams DC, Paoletti P, Bessereau JL (2008) Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor. Proc Natl Acad Sci USA 105(47):18590–18595. CrossRefPubMedGoogle Scholar
  15. Bowman DD, Montgomery SP, Zajac AM, Eberhard ML, Kazacos KR (2010) Hookworms of dogs and cats as agents of cutaneous larva migrans. Trends Parasitol 26(4):162–167. CrossRefPubMedGoogle Scholar
  16. Brooker S, Hotez PJ, Bundy DA (2008) Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl Trop Dis 2(9):e291. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Campbell SJ, Biritwum NK, Woods G, Velleman Y, Fleming F, Stothard JR (2018) Tailoring water, sanitation, and hygiene (WASH) targets for soil-transmitted helminthiasis and schistosomiasis control. Trends Parasitol 34(1):53–63. CrossRefPubMedGoogle Scholar
  18. Charvet CL, Guégnard F, Courtot E, Cortet J, Neveu C (2018) Nicotine-sensitive acetylcholine receptors are relevant pharmacological targets for the control of multidrug resistant parasitic nematodes. Int J Parasitol Drugs Drug Resist 8(3):540–549. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Choudhary S, Marjianović DS, Wong CR, Zhang X, Abongwa M, Coats JR et al (2019) Menthol acts as a positive allosteric modulator on nematode levamisole sensitive nicotinic acetylcholine receptors. Int J Parasitol Drugs Drug Resist 9:44–53. CrossRefPubMedGoogle Scholar
  20. Conder GA, Campbell WC (1995) Chemotherapy of nematode infections of veterinary importance, with special reference to drug resistance. Adv Parasitol 35:1–84CrossRefPubMedGoogle Scholar
  21. Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458. CrossRefPubMedGoogle Scholar
  22. De Clercq D, Sacko M, Behnke J, Gilbert F, Dorny P, Vercruysse J (1997a) Failure of mebendazole in treatment of human hookworm infections in the Southern Region of Mali. Am J Trop Med Hyg 57(1):25–30. CrossRefPubMedGoogle Scholar
  23. De Clercq D, Sacko M, Behnke J, Gilbert F, Dorny P, Vercruysse J (1997b) Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. Am J Trop Med Hyg 57(1):25–30CrossRefPubMedGoogle Scholar
  24. de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L (2003) Soil-transmitted helminth infections: updating the global picture. Trends Parasitol 19(12):547–551CrossRefPubMedGoogle Scholar
  25. Dias SRC, Cunha DES, da Silva SM, dos Santos HA, Fujiwara RT, Rabelo ÉML (2013) Evaluation of parasitological and immunological aspects of acute infection by Ancylostoma caninum and Ancylostoma braziliense in mixed-breed dogs. Parasitol Res 112(6):2151–2157. CrossRefPubMedGoogle Scholar
  26. Diemert DJ, Bethony JM, Hotez PJ (2008) Hookworm vaccines. Clin Infect Dis 46(2):282–288. CrossRefPubMedGoogle Scholar
  27. Epe C (2009) Intestinal nematodes: biology and control. Vet Clin North Am Small Anim Pract 39(6):1091–1107. CrossRefPubMedGoogle Scholar
  28. Flohr C, Tuyen LN, Lewis S, Minh TT, Campbell J, Britton J et al (2007) Low efficacy of mebendazole against hookworm in Vietnam: two randomized controlled trials. Am J Trop Med Hyg 76(4):732–736CrossRefPubMedGoogle Scholar
  29. Francis MM, Evans SP, Jensen M, Madsen DM, Mancuso J, Norman KR et al (2005) The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46(4):581–594. CrossRefPubMedGoogle Scholar
  30. Geerts S, Gryseels B (2000) Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 13(2):207–222CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. CrossRefPubMedGoogle Scholar
  32. Giniatullin R, Nistri A, Yakel JL (2005) Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci 28(7):371–378. CrossRefPubMedGoogle Scholar
  33. Global Burden of Disease Study, C (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995):743–800. CrossRefGoogle Scholar
  34. Guyatt HL, Brooker S, Peshu N, Shulman CE (2000) Hookworm and anaemia prevalence. Lancet 356(9247):2101CrossRefPubMedGoogle Scholar
  35. Harrow ID, Gration KAF (1985) Mode of action of the anthelmintics morantel, pyrantel and levamisole on muscle cell membrane of the nematode Ascaris suum. Pestic Sci 16(6):662–672. CrossRefGoogle Scholar
  36. Hewitson JP, Maizels RM (2014) Vaccination against helminth parasite infections. Expert Rev Vaccines 13(4):473–487. CrossRefPubMedGoogle Scholar
  37. Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374:166Google Scholar
  38. Hotez P (2008) Hookworm and poverty. Ann N Y Acad Sci 1136:38–44. CrossRefPubMedGoogle Scholar
  39. Hotez PJ, Pritchard DI (1995) Hookworm infection. Sci Am 272(6):68. CrossRefPubMedGoogle Scholar
  40. Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, Boussinesq M et al (2014) The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis 8(7):e2865. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jones AK, Davis P, Hodgkin J, Sattelle DB (2007) The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invertebr Neurosci 7(2):129–131. CrossRefGoogle Scholar
  42. Kaminsky R, Ducray P, Jung M, Clover R, Rufener L, Bouvier J et al (2008) A new class of anthelmintics effective against drug-resistant nematodes. Nature 452(7184):176–180. CrossRefPubMedGoogle Scholar
  43. Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20(10):477–481. CrossRefPubMedGoogle Scholar
  44. Keiser J, Utzinger J (2008) Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. JAMA 299(16):1937–1948. CrossRefPubMedGoogle Scholar
  45. Knopp S, Steinmann P, Keiser J, Utzinger J (2012) Nematode infections: soil-transmitted helminths and trichinella. Infect Dis Clin North Am 26(2):341–358. CrossRefPubMedGoogle Scholar
  46. Krücken J, Fraundorfer K, Mugisha JC, Ramünke S, Sifft KC, Geus D et al (2017) Reduced efficacy of albendazole against Ascaris lumbricoides in Rwandan schoolchildren. Int J Parasitol Drugs Drug Resist 7(3):262–271. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Landmann JK, Prociv P (2003) Experimental human infection with the dog hookworm, Ancylostoma caninum. Med J Aust 178(2):69–71PubMedGoogle Scholar
  48. Levin ED (2002) Nicotinic receptor subtypes and cognitive function. J Neurobiol 53(4):633–640. CrossRefPubMedGoogle Scholar
  49. Li Z, Liu J, Zheng M, Xu XZS (2014) Encoding of both analog- and digital-like behavioral outputs by one C. elegans interneuron. Cell 159(4):751–765. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R et al (2016) Hookworm infection. Nat Rev Dis Primers 2:16088. CrossRefPubMedGoogle Scholar
  51. Martin RJ, Verma S, Levandoski M, Clark CL, Qian H, Stewart M et al (2005) Drug resistance and neurotransmitter receptors of nematodes: recent studies on the mode of action of levamisole. Parasitology 131(Suppl):S71–S84. CrossRefPubMedGoogle Scholar
  52. Martin RJ, Robertson AP, Buxton SK, Beech RN, Charvet CL, Neveu C (2012) Levamisole receptors: a second awakening. Trends Parasitol 28(7):289–296. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Menzies SK, Rodriguez A, Chico M, Sandoval C, Broncano N, Guadalupe I et al (2014) Risk factors for soil-transmitted helminth infections during the first 3 years of life in the tropics; findings from a birth cohort. PLoS Negl Trop Dis 8(2):e2718. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nemzek JA, Lester PA, Wolfe AM, Dysko RC, Myers DD (2015) Chapter 12—Biology and diseases of dogs. In: Fox JG, Anderson LC, Otto GM, Pritchett-Corning KR, Whary MT (eds) Laboratory animal medicine, 3rd edn. Academic Press, Boston, pp 511–554CrossRefGoogle Scholar
  55. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. CrossRefGoogle Scholar
  56. Picciotto MR, Addy NA, Mineur YS, Brunzell DH (2008) It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol 84(4):329–342. CrossRefPubMedGoogle Scholar
  57. Prociv P, Croese J (1996) Human enteric infection with Ancylostoma caninum: hookworms reappraised in the light of a “new” zoonosis. Acta Trop 62(1):23–44CrossRefPubMedGoogle Scholar
  58. Pullan RL, Brooker SJ (2012) The global limits and population at risk of soil-transmitted helminth infections in 2010. Parasit Vectors 5:81. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ (2014) Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 7:37. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Quick MW, Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 53(4):457–478. CrossRefPubMedGoogle Scholar
  61. Raymond V, Mongan NP, Sattelle DB (2000) Anthelmintic actions on homomer-forming nicotinic acetylcholine receptor subunits: chicken α7 and ACR-16 from the nematode Caenorhabditis elegans. Neuroscience 101(3):785–791. CrossRefPubMedGoogle Scholar
  62. Reynoldson JA, Behnke JM, Pallant LJ, Macnish MG, Gilbert F, Giles S et al (1997) Failure of pyrantel in treatment of human hookworm infections (Ancylostoma duodenale) in the Kimberley region of North West Australia. Acta Trop 68(3):301–312. CrossRefPubMedGoogle Scholar
  63. Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2(9):791–797. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Thompson AJ, Lester HA, Lummis SC (2010) The structural basis of function in Cys-loop receptors. Q Rev Biophys 43(4):449–499. CrossRefPubMedGoogle Scholar
  66. Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM, Richmond JE (2005) acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280(29):27013–27021CrossRefPubMedGoogle Scholar
  67. Traversa D (2012) Pet roundworms and hookworms: a continuing need for global worming. Parasit Vectors 5:91. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Verma S, Kashyap SS, Robertson AP, Martin RJ (2017) Functional genomics in Brugia malayi reveal diverse muscle nAChRs and differences between cholinergic anthelmintics. Proc Natl Acad Sci USA 114(21):5539–5544. CrossRefPubMedGoogle Scholar
  69. WHO (2015) Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases. World Health Organisation, GenevaGoogle Scholar
  70. Wolstenholme AJ (2011) Ion channels and receptor as targets for the control of parasitic nematodes. Int J Parasitol Drugs Drug Resist 1(1):2–13. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends Parasitol 20(10):469–476. CrossRefPubMedGoogle Scholar
  72. Zheng F, Robertson AP, Abongwa M, Yu EW, Martin RJ (2016) The Ascaris suum nicotinic receptor, ACR-16, as a drug target: four novel negative allosteric modulators from virtual screening. Int J Parasitol Drugs Drug Resist 6(1):60–73. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shivani Choudhary
    • 1
  • James G. Tipton
    • 1
  • Melanie Abongwa
    • 1
  • Matthew T. Brewer
    • 2
  • Jeba Jesudoss Chelladurai
    • 2
  • Nicole Musselman
    • 1
  • Richard J. Martin
    • 1
  • Alan P. Robertson
    • 1
    Email author
  1. 1.Department of Biomedical Sciences, College of Veterinary MedicineIowa State UniversityAmesUSA
  2. 2.Department of Veterinary Pathology, College of Veterinary MedicineIowa State UniversityAmesUSA

Personalised recommendations