Clinical and Experimental Nephrology

, Volume 23, Issue 3, pp 313–324 | Cite as

Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney

  • Toru Fujii
  • Yuji Shiozaki
  • Hiroko Segawa
  • Shiori Nishiguchi
  • Ai Hanazaki
  • Miwa Noguchi
  • Ruri Kirino
  • Sumire Sasaki
  • Kazuya Tanifuji
  • Megumi Koike
  • Mizuki Yokoyama
  • Yuki Arima
  • Ichiro Kaneko
  • Sawako Tatsumi
  • Mikiko Ito
  • Ken-ichi MiyamotoEmail author
Original article



The role of Na+-dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na+-dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na+-dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells.


We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells.


We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na+/H+ exchanger regulatory factor 1 expression in OK cells.


These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.


Phosphate Transporter Proximal tubule Hereditary hypophosphatemic rickets with hypercalciuria 



We would like to thank the National Disease Research Interchange (NDRI, Philadelphia, PA) for procurement of the kidney samples used in this study. Research reported in this publication was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 23689045 to H. Segawa, No. 26293204 to K. Miyamoto), and The Salt Science Research Foundation (Japan).

Compliance with ethical standards

Conflict of interest

Authors have declared that no conflict of interest exists.

Human and animal rights statement

Mice were handled in accordance with the Guidelines for Animal Experimentation of Tokushima University School of Medicine (T29-3). This study was conducted according to the guidelines laid down in the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the Tokushima University Hospital (1343-1).

Supplementary material

10157_2018_1653_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 KB) (1.6 mb)
Supplementary material 2 (AI 1674 KB)


  1. 1.
    Block GA, Ix JH, Ketteler M, Martin KJ, Thadhani RI, Tonelli M, et al. Phosphate homeostasis in CKD: report of a scientific symposium sponsored by the National Kidney Foundation. Am J Kidney Dis. 2013;62:457–73.CrossRefPubMedGoogle Scholar
  2. 2.
    Vervloet MG, Sezer S, Massy ZA, Johansson L, Cozzolino M, Fouque D, et al. The role of phosphate in kidney disease. Nat Rev Nephrol. 2017;13:27–38.CrossRefPubMedGoogle Scholar
  3. 3.
    Miyamoto K, Haito-Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011;100:3719–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Archiv Eur J Physiol. 2014;466:139–53.CrossRefGoogle Scholar
  5. 5.
    Tieder M, Modai D, Samuel R, Arie R, Halabe A, Bab I, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med. 1985;312:611–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA. 1998;95:5372–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Jones A, Tzenova J, Frappier D, Crumley M, Roslin N, Kos C, et al. Hereditary hypophosphatemic rickets with hypercalciuria is not caused by mutations in the Na/Pi cotransporter NPT2 gene. J Am Soc Nephrol. 2001;12:507–14.PubMedGoogle Scholar
  8. 8.
    Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193–201.CrossRefPubMedGoogle Scholar
  9. 9.
    Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet. 2006;78:179–92.CrossRefPubMedGoogle Scholar
  10. 10.
    Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, et al. Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Mineral Metabol. 2007;25:407–13.CrossRefGoogle Scholar
  11. 11.
    Prie D, Huart V, Bakouh N, Planelles G, Dellis O, Gerard B, et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med. 2002;347:983–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Rajagopal A, Braslavsky D, Lu JT, Kleppe S, Clement F, Cassinelli H, et al. Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis. J Clini Endocrinol Metabol. 2014;99:E2451-6.CrossRefGoogle Scholar
  13. 13.
    Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, et al. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol. 2016;27:604–14.CrossRefPubMedGoogle Scholar
  14. 14.
    Dinour D, Davidovits M, Ganon L, Ruminska J, Forster IC, Hernando N, et al. Loss of function of NaPiIIa causes nephrocalcinosis and possibly kidney insufficiency. Pediatr Nephrol. 2016;31:2289–97.CrossRefPubMedGoogle Scholar
  15. 15.
    Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, et al. Growth-related renal type II Na/Pi cotransporter. J Biol Chem. 2002;277:19665–72.CrossRefPubMedGoogle Scholar
  16. 16.
    Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, et al. Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol. 2009;20:104–13.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol. 2009;297:F671-8.CrossRefPubMedGoogle Scholar
  18. 18.
    Myakala K, Motta S, Murer H, Wagner CA, Koesters R, Biber J, et al. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am J Physiol Renal Physiol. 2014;306:F833-43.CrossRefPubMedGoogle Scholar
  19. 19.
    Koyama H, Goodpasture C, Miller MM, Teplitz RL, Riggs AD. Establishment and characterization of a cell line from the American opossum (Didelphys virginiana). In vitro. 1978;14:239–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Eshbach ML, Sethi R, Avula R, Lamb J, Hollingshead DJ, Finegold DN, et al. The transcriptome of the Didelphis virginiana opossum kidney OK proximal tubule cell line. Am J Physiol Renal Physiol. 2017;313:F585-F95.CrossRefGoogle Scholar
  21. 21.
    Ito M, Sakurai A, Hayashi K, Ohi A, Kangawa N, Nishiyama T, et al. An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells. Am J Physiol Renal Physiol. 2010;299:F243-54.PubMedGoogle Scholar
  22. 22.
    Scotto-Lavino E, Du G, Frohman MA. 3′ end cDNA amplification using classic RACE. Nat Protoc. 2006;1:2742–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Ito M, Iidawa S, Izuka M, Haito S, Segawa H, Kuwahata M, et al. Interaction of a farnesylated protein with renal type IIa Na/Pi co-transporter in response to parathyroid hormone and dietary phosphate. Biochem J. 2004;377:607–16.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Haito-Sugino S, Ito M, Ohi A, Shiozaki Y, Kangawa N, Nishiyama T, et al. Processing and stability of type IIc sodium-dependent phosphate cotransporter mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria. Am J Physiol Cell Physiol. 2012;302:C1316–30.CrossRefGoogle Scholar
  25. 25.
    Ohkido I, Segawa H, Yanagida R, Nakamura M, Miyamoto K. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pflugers Archiv Eur J Physiol. 2003;446:106–15.CrossRefGoogle Scholar
  26. 26.
    Katai K, Segawa H, Haga H, Morita K, Arai H, Tatsumi S, et al. Acute regulation by dietary phosphate of the sodium-dependent phosphate transporter (NaP(i)-2) in rat kidney. J Biochem. 1997;121:50–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Kimura H, Murad F. Localization of particulate guanylate cyclase in plasma membranes and microsomes of rat liver. J Biol Chem. 1975;250:4810–7.PubMedGoogle Scholar
  28. 28.
    Su HW, Yeh HH, Wang SW, Shen MR, Chen TL, Kiela PR, et al. Cell confluence-induced activation of signal transducer and activator of transcription-3 (Stat3) triggers epithelial dome formation via augmentation of sodium hydrogen exchanger-3 (NHE3) expression. J Biol Chem. 2007;282:9883–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metabol Pharmacokinet. 2008;23:22–44.CrossRefGoogle Scholar
  30. 30.
    Consortium GT. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.CrossRefGoogle Scholar
  31. 31.
    Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Archiv Eur J Physiol 2018.Google Scholar
  32. 32.
    Hernando N, Deliot N, Gisler SM, Lederer E, Weinman EJ, Biber J, et al. PDZ-domain interactions and apical expression of type IIa Na/P(i) cotransporters. Proc Natl Acad Sci USA. 2002;99:11957–62.CrossRefPubMedGoogle Scholar
  33. 33.
    Mahon MJ, Cole JA, Lederer ED, Segre GV. Na+/H+ exchanger-regulatory factor 1 mediates inhibition of phosphate transport by parathyroid hormone and second messengers by acting at multiple sites in opossum kidney cells. Mol Endocrinol. 2003;17:2355–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Clark BJ, Murray RD, Salyer SA, Tyagi SC, Arumugam C, Khundmiri SJ, et al. Protein-DNA Interactions at the Opossum Npt2a Promoter are Dependent upon NHERF-1. Cell Physiol Biochem. 2016;39:1–12.CrossRefPubMedGoogle Scholar
  35. 35.
    Karim Z, Gerard B, Bakouh N, Alili R, Leroy C, Beck L, et al. NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med. 2008;359:1128–35.CrossRefPubMedGoogle Scholar
  36. 36.
    Courbebaisse M, Leroy C, Bakouh N, Salaun C, Beck L, Grandchamp B, et al. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism. PloS one. 2012;7:e34764.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kuro-o M. A potential link between phosphate and aging—lessons from Klotho-deficient mice. Mech Ageing Dev. 2010;131:270–5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Evans KD, Hewett TA, Clayton CJ, Krubitzer LA, Griffey SM. Normal organ weights, serum chemistry, hematology, and cecal and nasopharyngeal bacterial cultures in the gray short-tailed opossum (Monodelphis domestica). J Am Assoc Lab Anim Sci. 2010;49:401–6.PubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2018

Authors and Affiliations

  • Toru Fujii
    • 1
  • Yuji Shiozaki
    • 1
  • Hiroko Segawa
    • 1
  • Shiori Nishiguchi
    • 1
  • Ai Hanazaki
    • 1
  • Miwa Noguchi
    • 1
  • Ruri Kirino
    • 1
  • Sumire Sasaki
    • 1
  • Kazuya Tanifuji
    • 1
  • Megumi Koike
    • 1
  • Mizuki Yokoyama
    • 1
  • Yuki Arima
    • 1
  • Ichiro Kaneko
    • 1
  • Sawako Tatsumi
    • 1
  • Mikiko Ito
    • 2
  • Ken-ichi Miyamoto
    • 1
    Email author
  1. 1.Department of Molecular Nutrition, Institute of Biomedical SciencesUniversity of Tokushima Graduate SchoolTokushimaJapan
  2. 2.Human Science and EnvironmentUniversity of Hyogo Graduate SchoolHyogoJapan

Personalised recommendations