Skip to main content
Log in

Angiotensinogen gene polymorphisms and progression of chronic kidney disease in ADPKD patients

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Autosomal dominant polycystic kidney disease (ADPKD) is a multisystemic and progressive disorder characterized by cyst formation and kidney enlargement and ultimately renal failure. Reduction of CKD progression in the ADPKD by pharmacological blockade of the renin–angiotensin–aldosterone system (RAAS) using ACE inhibitors indicated the involvement of RAAS pathway in the progression of CKD. The aim of the present study is to investigate the role of angiotensinogen tag-single nucleotide polymorphisms (AGT tag-SNPs) in progression of CKD.

Methods

Twelve AGT tag-SNPs were genotyped in 102 ADPKD patients and 106 non-ADPKD subjects using FRET-based KASPar method. Genotypes and haplotypes were compared between ADPKD and controls. The effect of genotypes and hypertension on CKD progression was assessed using univariate and multivariate logistic regression. Mantel–Haenszel (M–H) stratified analysis was performed to study the interaction between CKD stages and hypertension.

Results

Of the twelve tag-SNPs analyzed, only rs11122578 SNP deviated Hardy–Weinberg equilibrium in controls. Significant association between two AGT polymorphisms (rs11122577 and rs4762) and ADPKD was observed. Analysis of linkage disequilibrium revealed two haplotype blocks and haplotypes are not associated with ADPKD. The univariate analysis revealed that the age, hypertension, family history of diabetes and AGT rs4762 contributed to the progression of CKD in ADPKD. The modifier effect of these factors remained even after controlling other variables in multivariate analysis.

Conclusions

The results of our study suggest significant association between Thr207Met polymorphism of AGT and CKD progression and acts as an effect modifier of renal disease progression in ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Choi R, Park HC, Lee K, Lee MG, Kim JW, Ki CS, et al. Identification of novel PKD1 and PKD2 mutations in Korean patients with autosomal dominant polycystic kidney disease. BMC Med Genet. 2014;15:129. doi:10.1186/s12881-014-0129-y.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chae SW, Cho EY, Park MS, Lee KB, Kim H, Kim U. Polycystin-1 expression in fetal, adult and autosomal dominant polycystic kidney. J Korean Med Sci. 2006;21(3):425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Garzotto F, Piccinni P, Cruz D, Gramaticopolo S, Dal Santo M, Aneloni G, et al. RIFLE-based data collection/management system applied to a prospective cohort multicenter Italian study on the epidemiology of acute kidney injury in the intensive care unit. Blood Purif. 2011;31(1–3):159–71. doi:10.1159/000322161.

    Article  PubMed  Google Scholar 

  4. Stojceva-Taneva O. Epidemiology of renal replacement therapy in Macedonia. Bosnian J Basic Med Sci. 2010;10(Suppl 1):S23–8.

    Google Scholar 

  5. Kramer A, Stel V, Zoccali C, Heaf J, Ansell D, Gronhagen-Riska C, et al. An update on renal replacement therapy in Europe: ERA-EDTA Registry data from 1997 to 2006. Nephrol Dial Transplant. 2009;24(12):3557–66. doi:10.1093/ndt/gfp519.

    Article  PubMed  Google Scholar 

  6. Harris PC. 2008 Homer W. Smith Award: insights into the pathogenesis of polycystic kidney disease from gene discovery. J Am Soc Nephrol. 2009;20(6):1188–98. doi:10.1681/ASN.2009010014.

    Article  CAS  PubMed  Google Scholar 

  7. Higashihara E, Nutahara K, Kojima M, Tamakoshi A, Yoshiyuki O, Sakai H, et al. Prevalence and renal prognosis of diagnosed autosomal dominant polycystic kidney disease in Japan. Nephron. 1998;80(4):421–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hirobe T, Shinpo T, Higuchi K, Sano T. Life cycle of human melanocytes is regulated by endothelin-1 and stem cell factor in synergy with cyclic AMP and basic fibroblast growth factor. J Dermatol Sci. 2010;57(2):123–31. doi:10.1016/j.jdermsci.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  9. Chapman AB, Johnson A, Gabow PA, Schrier RW. The renin–angiotensin–aldosterone system and autosomal dominant polycystic kidney disease. N Engl J Med. 1990;323(16):1091–6. doi:10.1056/NEJM199010183231602.

    Article  CAS  PubMed  Google Scholar 

  10. Kocyigit I, Yilmaz MI, Unal A, Ozturk F, Eroglu E, Yazici C, et al. A link between the intrarenal renin angiotensin system and hypertension in autosomal dominant polycystic kidney disease. Am J Nephrol. 2013;38(3):218–25. doi:10.1159/000354317.

    Article  CAS  PubMed  Google Scholar 

  11. Corvol P, Jeunemaitre X. Molecular genetics of human hypertension: role of angiotensinogen. Endocr Rev. 1997;18(5):662–77.

    CAS  PubMed  Google Scholar 

  12. Campbell DJ, Habener JF. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest. 1986;78(1):31–9. doi:10.1172/jci112566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaillard I, Clauser E, Corvol P. Structure of human angiotensinogen gene. DNA. 1989;8(2):87–99.

    Article  CAS  PubMed  Google Scholar 

  14. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, et al. Molecular-basis of human hypertension—role of angiotensinogen. Cell. 1992;71(1):169–80.

    Article  CAS  PubMed  Google Scholar 

  15. Weidmann P, De Myttenaere-Bursztein S, Maxwell MH, de Lima J. Effect on aging on plasma renin and aldosterone in normal man. Kidney Int. 1975;8(5):325–33.

    Article  CAS  PubMed  Google Scholar 

  16. Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet. 1994;343(8901):824–7.

    Article  CAS  PubMed  Google Scholar 

  17. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–S266. pii: S0272638602093563

  18. Clase CM, Kiberd BA, Garg AX. Relationship between glomerular filtration rate and the prevalence of metabolic abnormalities: results from the Third National Health and Nutrition Examination Survey (NHANES III). Nephron Clin Pract. 2007;105(4):c178–84. doi:10.1159/000100489.

    Article  PubMed  Google Scholar 

  19. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.

    Google Scholar 

  20. Xu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009;37(Web Server issue):W600–5. doi:10.1093/nar/gkp290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5. doi:10.1093/bioinformatics/bth457.

    Article  CAS  PubMed  Google Scholar 

  22. Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest. 1997;99(7):1786–97. doi:10.1172/JCI119343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, et al. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci. 1995;92(7):2735–9. doi:10.1073/pnas.92.7.2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar A, Sarde SJ, Bhandari A. Revising angiotensinogen from phylogenetic and genetic variants perspectives. Biochem Biophys Res Commun. 2014;446(2):504–18. doi:10.1016/j.bbrc.2014.02.139.

    Article  CAS  PubMed  Google Scholar 

  25. Chang HR, Cheng CH, Shu KH, Chen CH, Lian JD, Wu MY. Study of the polymorphism of angiotensinogen, anigiotensin-converting enzyme and angiotensin receptor in type II diabetes with end-stage renal disease in Taiwan. J Chin Med Assoc. 2003;66(1):51–6.

    PubMed  Google Scholar 

  26. Pereira TV, Nunes AC, Rudnicki M, Yamada Y, Pereira AC, Krieger JE. Meta-analysis of the association of 4 angiotensinogen polymorphisms with essential hypertension: a role beyond M235T? Hypertension. 2008;51(3):778–83. doi:10.1161/hypertensionaha.107.100370.

    Article  PubMed  Google Scholar 

  27. Lee Sr, Moon JY, Lee SH, Ihm CG, Lee TW, Kim SK, et al. Angiotensinogen polymorphisms and post-transplantation diabetes mellitus in Korean renal transplant subjects. Kidney Blood Press Res. 2013;37(2–3):95–102. doi:10.1159/000343404.

    Article  CAS  PubMed  Google Scholar 

  28. Montasser ME, Shimmin LC, Gu D, Chen J, Gu C, Kelly TN, et al. Variation in genes that regulate blood pressure are associated with glomerular filtration rate in Chinese. PLoS One. 2014;9(3):e92468. doi:10.1371/journal.pone.0092468.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baboolal K, Ravine D, Daniels J, Williams N, Holmans P, Coles GA, et al. Association of the angiotensin I converting enzyme gene deletion polymorphism with early onset of ESRF in PKD1 adult polycystic kidney disease. Kidney Int. 1997;52(3):607–13.

    Article  CAS  PubMed  Google Scholar 

  30. Kelly TN, Raj D, Rahman M, Kretzler M, Kallem RR, Ricardo AC, et al. The role of renin–angiotensin–aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Nephrol Dial Transplant. 2015;. doi:10.1093/ndt/gfv125.

    PubMed  Google Scholar 

  31. Torres VE, Grantham JJ, Chapman AB, Mrug M, Bae KT, King BF Jr, et al. Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2011;6(3):640–7. doi:10.2215/CJN.03250410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lattanzio MR, Weir MR. Does blockade of the renin–angiotensin–aldosterone system slow progression of all forms of kidney disease? Curr Hypertens Rep. 2010;12(5):369–77. doi:10.1007/s11906-010-0142-2.

    Article  CAS  PubMed  Google Scholar 

  33. Koyama S, Ammons WS, Manning JW. Visceral afferents and the fastigial nucleus in vascular and plasma renin adjustments to head-up tilting. J Auton Nerv Syst. 1981;4(4):381–92.

    Article  CAS  PubMed  Google Scholar 

  34. Xu Z, Xu B, Xu C. Urinary angiotensinogen as a potential biomarker of intrarenal renin–angiotensin system activity in Chinese chronic kidney disease patients. Ir J Med Sci. 2015;184(2):297–304. doi:10.1007/s11845-014-1103-6.

    Article  CAS  PubMed  Google Scholar 

  35. X-y Zhang, X-q Ding, Lv WL, Teng J, Zhong Y-h. ELISA examining urinary angiotensinogen as a potential indicator of intrarenal renin–angiotensin system (RAS) activity: a clinical study of 128 chronic kidney disease patients. Mol Biol Rep. 2013;40(10):5817–24. doi:10.1007/s11033-013-2687-z.

    Article  Google Scholar 

  36. Gomez RA, Lynch KR, Chevalier RL, Wilfong N, Everett A, Carey RM, et al. Renin and angiotensinogen gene expression in maturing rat kidney. Am J Physiol Renal Physiol. 1988;254(4):F582–7.

    CAS  Google Scholar 

  37. Nishijima Y, Kobori H, Kaifu K, Mizushige T, Hara T, Nishiyama A, et al. Circadian rhythm of plasma and urinary angiotensinogen in healthy volunteers and in patients with chronic kidney disease. J Renin Angiotensin Aldosterone Syst. 2014;15(4):505–8. doi:10.1177/1470320314557584.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhaskar V. K. S. Lakkakula.

Ethics declarations

Conflict of interest

There are no conflicts of interest. The results presented in this paper have not been published previously in whole or part, except in abstract format. The conflict of interest statement is applicable for all the authors.

Additional information

IEC approval number (IEC-NI/09/MAR/08/09).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanasambandan, R., Elumalai, R., Soundararajan, P. et al. Angiotensinogen gene polymorphisms and progression of chronic kidney disease in ADPKD patients. Clin Exp Nephrol 20, 561–568 (2016). https://doi.org/10.1007/s10157-015-1183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1183-2

Keywords

Navigation