Skip to main content

Advertisement

Log in

Sex differences in pudendal somatosensory evoked potentials

  • Original Article
  • Published:
Techniques in Coloproctology Aims and scope Submit manuscript

Abstract

Background

Somatosensory evoked potentials (SEPs) of the pudendal nerve are a well-established diagnostic tool for the evaluation of pelvic floor disorders. However, the possible influence of sex differences on response latencies has not been established yet. The aim of this study was to standardize the procedures and to evaluate possible effects of gender differences on anal and penile/clitoral SEPs.

Methods

The anal and dorsal penile/clitoral SEPs were recorded in 84 healthy subjects (40 males and 44 females; mean age 47.9 ± 16.6 years, range 16–81 years; mean height 168.3 ± 20.3 cm, range 155–187 cm). Pudendal SEPs were evoked with a bipolar surface electrode stimulating the clitoris or the base of the penis and the anal orifice and recorded using scalp electrodes. The latency of the first positive component (P1) was measured. The effect and possible interaction of (a) stimulation site and (b) gender on the two variables was explored by multivariate analysis of variance (MANOVA).

Results

The examination was well tolerated and a reproducible waveform of sufficient quality was obtained in all the subjects examined. In the female subjects, a mean cortical P1 latency of 37.0 ± 2.6 and 36.4 ± 3.2 ms for anal and clitoral stimulation, respectively, was found. In the male subjects, the cortical latencies were 38.0 ± 3.5 ms for the anal stimulation and 40.2 ± 3.7 ms for the penile stimulation. At MANOVA, a statistically significant main effect of stimulation site and gender as well as a significant interaction between the two variables was found.

Conclusions

Anal and dorsal penile/clitoral SEPs represent a well-tolerated and reproducible method to assess the functional integrity of the sensory pathways in male and female subjects. Obtaining sex-specific reference data, by individual electrophysiological testing, is highly recommended because of significant latency differences between males and females, at least as far as penile/clitoral responses are concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vodusek DB, Amarenco G, Podnar S (2009) Clinical neurophysiological tests. In: Abrams P, Cardozo L, Khoury S, Wein A (eds) Incontinence, 4th edn. Health Publications Ltd, Plymouth, pp 523–540

    Google Scholar 

  2. Loening-Baucke V, Read NW, Yamada T, Barker AT (1994) Evaluation of the motor and sensory components of the pudendal nerve. Electroencephalogr Clin Neurophysiol 93:35–41

    Article  CAS  PubMed  Google Scholar 

  3. Podnar S (2003) Electrodiagnosis of the anorectum: a review of techniques and clinical applications. Tech Coloproctol 7:71–76

    Article  CAS  PubMed  Google Scholar 

  4. Haldeman S, Bradley WE, Bhatia NN, Johnson BK (1983) Cortical evoked potentials on stimulation of pudendal nerve in women. Urology 21:590–593

    Article  CAS  PubMed  Google Scholar 

  5. Opsomer RJ, Guerit JM, Wese FX, Van Cangh PJ (1986) Pudendal cortical somatosensory evoked potentials. J Urol 135:1216–1218

    CAS  PubMed  Google Scholar 

  6. Guérit JM, Opsomer RJ (1991) Bit-mapped imaging of somatosensory evoked potentials after stimulation of the posterior tibial nerves and dorsal nerve of the penis/clitoris. Electroencephalogr Clin Neurophysiol 80:228–237

    Article  PubMed  Google Scholar 

  7. Delodovici ML, Fowler CJ (1995) Clinical value of the pudendal somatosensory evoked potential. Electroencephalogr Clin Neurophysiol 96:509–515

    Article  CAS  PubMed  Google Scholar 

  8. Vodusek DB (1990) Pudendal SEP and bulbocavernosus reflex in women. Electroencephalogr Clin Neurophysiol 77:134–136

    Article  CAS  PubMed  Google Scholar 

  9. Podnar S, Vodusek DB, Trsinar B, Rodi Z (1997) A method of uroneurophysiological investigation in children. Electroencephalogr Clin Neurophysiol 104:389–392

    Article  CAS  PubMed  Google Scholar 

  10. Yang CC, Kromm BG (2004) New techniques in female pudendal somatosensory evoked potential testing. Somatosens Mot Res 21:9–14

    Article  CAS  PubMed  Google Scholar 

  11. Cavalcanti GA, Bruschini H, Manzano GM et al (2007) Pudendal somatosensory evoked potentials in normal women. Int Braz J Urol 33:815–821

    Article  PubMed  Google Scholar 

  12. Haldeman S, Bradley WE, Bhatia NN, Johnson BK (1982) Pudendal evoked responses. Arch Neurol 39:280–283

    Article  CAS  PubMed  Google Scholar 

  13. Haldeman S, Bradley WE, Bhatia N (1982) Evoked responses from the pudendal nerve. J Urol 128:974–980

    CAS  PubMed  Google Scholar 

  14. Remes-Troche JM, Tantiphlachiva K, Attaluri A et al (2011) A bi-directional assessment of the human brain-anorectal axis. Neurogastroenterol Motil 23:240–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Jasper HH (1958) The 10–20 electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  16. Fowler CJ (2001) Neurologist’s clinical and investigative approach to patients with bladder, bowel and sexual dysfunction. In: Fowler CJ, Sakakibara R, Frohman EM, Steward JD (eds) Neurologic bladder, bowel and sexual dysfunction. Elseviers, Amsterdam, pp 1–6

    Google Scholar 

  17. Podnar S, Vodusek DB (2001) Protocol for clinical neurophysiologic examination of the pelvic floor. Neurourol Urodyn 20:669–682

    Article  CAS  PubMed  Google Scholar 

  18. Kaiser T, Jost WH, Osterhage J, Derouet H, Schimrigk K (2001) Penile and perianal pudendal nerve somatosensory evoked potentials in the diagnosis of erectile dysfunction. Int J Impot Res 13:89–92

    Article  CAS  PubMed  Google Scholar 

  19. Campbell WW, Ward LC, Swift TR (1981) Nerve conduction velocity varies inversely with height. Muscle Nerve 4:520–523

    Article  PubMed  Google Scholar 

  20. Bharucha AE (2006) Pelvic floor: anatomy and function. Neurogastroenterol Motil 18:507–519

    Article  CAS  PubMed  Google Scholar 

  21. Blaivas JG, Labib KL, Bauer SB, Retik AB (1977) A new approach to electromyography of the external urethral sphincter. J Urol 117:773–777

    CAS  PubMed  Google Scholar 

  22. Blaivas JG, Scott RM, Labib KB (1979) Urodynamic evaluation as neurologic test of sacral cord function. Urology 13:682–687

    Article  CAS  PubMed  Google Scholar 

  23. Snooks SJ, Swash M (1984) Abnormalities of the innervation of the urethral striated sphincter musculature in incontinence. Br J Urol 56:401–405

    Article  CAS  PubMed  Google Scholar 

  24. Blaivas JG, Zayed AA, Labib KB (1981) The bulbocavernosus reflex in urology: a prospective study of 299 patients. J Urol 126:197–199

    CAS  PubMed  Google Scholar 

  25. Podnar S (2007) Neurophysiology of the neurogenic lower urinary tract disorders. Clin Neurophysiol 118:1423–1437

    Article  PubMed  Google Scholar 

  26. Lefaucheur JP (2006) Neurophysiological testing in anorectal disorders. Muscle Nerve 33:324–333

    Article  PubMed  Google Scholar 

  27. Podnar S, Mrkaić M (2002) Predictive power of motor unit potential parameters in anal sphincter electromyography. Muscle Nerve 26:389–394

    Article  PubMed  Google Scholar 

  28. Podnar S (2003) Electromyography of the anal sphincter: which muscle to examine? Muscle Nerve 28:377–379

    Article  PubMed  Google Scholar 

  29. Opsomer RJ, Caramia MD, Zarola F, Pesce F, Rossini PM (1989) Neurophysiological evaluation of central-peripheral sensory and motor pudendal fibres. Electroencephalogr Clin Neurophysiol 74:260–270

    Article  CAS  PubMed  Google Scholar 

  30. Jost WH, Schimrigk K (1994) Magnetic stimulation of the pudendal nerve. Dis Colon Rectum 37:697–699

    Article  CAS  PubMed  Google Scholar 

  31. Pelliccioni G, Scarpino O, Piloni V (1997) Motor evoked potentials recorded from external anal sphincter by cortical and lumbo-sacral magnetic stimulation: normative data. J Neurol Sci 149:69–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are especially indebted to Miss Luana Rosa, technician in neurophysiology, for her technical assistance and skillfulness.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pelliccioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelliccioni, G., Piloni, V., Sabbatini, D. et al. Sex differences in pudendal somatosensory evoked potentials. Tech Coloproctol 18, 565–569 (2014). https://doi.org/10.1007/s10151-013-1105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10151-013-1105-9

Keywords

Navigation