Advertisement

International Journal of Clinical Oncology

, Volume 24, Issue 11, pp 1333–1349 | Cite as

The evolution of surgical treatment for gastrointestinal cancers

  • Yoshihiko MaeharaEmail author
  • Yuji Soejima
  • Tomoharu Yoshizumi
  • Naoyuki Kawahara
  • Eiji Oki
  • Hiroshi Saeki
  • Tomohiko Akahoshi
  • Toru Ikegami
  • Yo-ichi Yamashita
  • Tadashi Furuyama
  • Keishi Sugimachi
  • Noboru Harada
  • Tetsuzo Tagawa
  • Norifumi Harimoto
  • Shinji Itoh
  • Hideto Sonoda
  • Koji Ando
  • Yuichiro Nakashima
  • Yoshihiro Nagao
  • Nami Yamashita
  • Yuta Kasagi
  • Takafumi Yukaya
  • Takeshi Kurihara
  • Ryosuke Tsutsumi
  • Shinkichi Takamori
  • Shun Sasaki
  • Tetsuo Ikeda
  • Yoshikazu Yonemitsu
  • Takasuke Fukuhara
  • Hiroyuki Kitao
  • Makoto Iimori
  • Yuki Kataoka
  • Takeshi Wakasa
  • Masami Suzuki
  • Koji Teraishi
  • Yasuto Yoshida
  • Masaki Mori
Special Article

Abstract

Introduction

According to the latest Japanese nationwide estimates, over a million Japanese people are newly diagnosed with cancer each year. Since gastrointestinal cancers account for more than 40% of all cancer-related deaths, it is imperative to formulate effective strategies to control them.

Materials and methods, and results

Basic drug discovery research Our research has revealed that the abnormal expression of regulators of chromosomal stability is a cause of cancers and identified an effective compound against cancers with chromosomal instability. We revealed the molecular mechanism of peritoneal dissemination of cancer cells via the CXCR4/CXCL12 axis to CAR-like cells and identified an MEK inhibitor effective against these tumors. Residual tumor cells after chemotherapy in colorectal cancer are LGR5-positive cancer stem cells and their ability to eliminate reactive oxygen species is elevated. The development of surgical procedures and devices In cases of gastric tube reconstruction for esophageal cancer, we determined the anastomotic line for evaluating the blood flow using ICG angiography and measuring the tissue O2 metabolism. We established a novel gastric reconstruction method (book-binding technique) for gastric cancer and a new rectal reconstruction method focusing on the intra-intestinal pressure resistance for rectal cancer. We established a novel tissue fusion method, which allows contact-free local heating and retains tissue viability with very little damage, and developed an understanding of the collagen-related processes that underpin laser-induced tissue fusion. Strategy to prevent carcinogenesis We succeeded in cleaving hepatitis B virus DNA integrated into the nucleus of hepatocytes using genome editing tools. The development of HCC from non-alcoholic steatohepatitis (NASH) may be prevented by metabolic surgery.

Conclusion

We believe that these efforts will help to significantly improve the gastrointestinal cancer treatment and survival.

Keywords

Gastrointestinal cancers Drug discovery Chromosomal instability Reconstruction after gastrointestinal surgery Biomaterial collagen Cancer odors Metabolic surgery 

Notes

Acknowledgements

Twenty seven of our studies have been financially supported by these agencies. I received the grants as the representative of these studies. We would like to extend our sincere appreciation to the Ministry of Education, Culture, Sports, Science and Technology; the Ministry of Health, Labour and Welfare; and the Japan Agency for Medical Research and Development.

Compliance with ethical standards

Conflict of interest

We disclose the following conflicts of interest. We offer our heartfelt gratitude to the cooperation extended by the research institutes of these four companies: Taiho Pharmaceutical, Chugai Pharmaceutical, Ono Pharmaceutical, and Yakult Honsha.

References

  1. 1.
    Kasagi Y, Harada Y, Morodomi Y et al (2016) Peritoneal dissemination requires an Sp1-dependent CXCR1/CXCL12 signaling axis and extracellular matrix-directed spheroid formation. Cancer Res 76:347–357CrossRefGoogle Scholar
  2. 2.
    Kobayashi S, Yamada-Okabe H, Suzuki M et al (2012) LGR5-positive colon cancer stem cells interconvert with drug-resistant LGR5-negative cells and are capable of tumor reconstitution. Stem Cells 30:2631–2644CrossRefGoogle Scholar
  3. 3.
    Ando K, Kakeji Y, Kitao H et al (2010) High expression of BUBR1 is one of the factors for inducing DNA aneuploidy and progression in gastric cancer. Cancer Sci 101(3):639–645CrossRefGoogle Scholar
  4. 4.
    Honma K, Nakanishi R, Nakanoko T et al (2014) Contribution of Aurora-A and -B expression to DNA aneuploidy in gastric cancers. Surg Today 44(3):454–461CrossRefGoogle Scholar
  5. 5.
    Otsu H, Iimori M, Ando K et al (2016) Gastric cancer patients with high PLK1 expression and DNA aneuploidy correlate with poor prognosis. Oncology 91(1):31–40CrossRefGoogle Scholar
  6. 6.
    Nishimura S, Oki E, Ando K et al (2017) High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med 6(6):1453–1464CrossRefGoogle Scholar
  7. 7.
    Iimori M, Watanabe S, Kiyonari S et al (2016) Phosphorylation of EB2 by Aurora B and CDK1 ensures mitotic progression and genome stability. Nat Commun 7:11117CrossRefGoogle Scholar
  8. 8.
    Fujii S, Ikenaka K, Fukushima M et al (1978) Effect of uracil and its derivatives on antitumor activity of 5-fluorouracil and 1-(2-tetrahydrofuryl)-5-fluorouracil. GANN Jpn J Cancer Res 69(6):763–772Google Scholar
  9. 9.
    Shirasaka T, Nakano K, Takechi T et al (1996) Antitumor activity of 1 M tegafur-0.4 M 5-chloro-2,4-dihydroxypyridine-1 M potassium oxonate (S-1) against human colon carcinoma orthotopically implanted into nude rats. Cancer Res 56(11):2602–2606PubMedGoogle Scholar
  10. 10.
    Maehara Y, Kusumoto T, Kusumoto H et al (1989) 5-Fluorouracil and UFT-sensitive gastric carcinoma has a high level of thymidylate synthase. Cancer 63(9):1693–1696CrossRefGoogle Scholar
  11. 11.
    Maehara Y, Takeuchi H, Oshiro T et al (1994) Effect of gastrectomy on the pharmacokinetics of tegafur, uracil, and 5-fluorouracil after oral administration of a 1:4 tegafur and uracil combination. Cancer Chemother Pharmacol 33(6):445–449CrossRefGoogle Scholar
  12. 12.
    Maehara Y (2003) S-1 in gastric cancer: a comprehensive review. Gastric Cancer 6(Suppl 1):2–8CrossRefGoogle Scholar
  13. 13.
    Oki E, Murata A, Yoshida K et al (2016) A randomized phase III trial comparing S-1 versus UFT as adjuvant chemotherapy for stage II/III rectal cancer (JFMC35-C1: ACTS-RC). Ann Oncol 27(7):1266–1272CrossRefGoogle Scholar
  14. 14.
    Oki E, Tokunaga S, Emi Y et al (2016) Surgical treatment of liver metastasis of gastric cancer: a retrospective multicenter cohort study (KSCC1302). Gastric Cancer 19(3):968–976CrossRefGoogle Scholar
  15. 15.
    Shinozaki K, Yuki S, Kashiwada T et al (2017) A phase II study (KSCC/HGCSG/ COG/PerSeUS1501B) of trastuzumab plus S-1 and oxaliplatin for HER2-positive advanced gastric cancer. ASCO 2017 (Abstract #4059) Google Scholar
  16. 16.
    Edahiro K, Iimori M, Kobunai T et al (2018) Thymidine kinase 1 loss confers trifluridine resistance without affecting 5-fluorouracil metabolism and cytotoxicity. Mol Cancer Res 16(10):1483–1490CrossRefGoogle Scholar
  17. 17.
    Matsuoka K, Iimori M, Niimi S et al (2015) Trifluridine induces p53-dependent sustained G2 phase arrest with its massive misincorporation into DNA and few DNA strand breaks. Mol Cancer Ther 14(4):1004–1013CrossRefGoogle Scholar
  18. 18.
    Kiyonari S, Iimori M, Matsuoka K et al (2015) The 1,2-diaminocyclohexane carrier ligand in oxaliplatin induces p53-dependent transcriptional repression of factors involved in thymidylate biosynthesis. Mol Cancer Ther 14(10):2332–2342CrossRefGoogle Scholar
  19. 19.
    Shojaei F, Wu X, Ferrara N et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25:911–920CrossRefGoogle Scholar
  20. 20.
    Iwai T, Harada Y, Yonemitsu Y et al (2018) Capecitabine reverses tumor escape from anti-VEGF through the eliminating CD11bhigh/Gr1high myeloid cells. Oncotarget 9(25):17620–17630CrossRefGoogle Scholar
  21. 21.
    Yamashita N, Tokunaga E, Iimori M et al (2018) Epithelial paradox: clinical significance of coexpression of E-cadherin and vimentin with regard to invasion and metastasis of breast cancer. Clin Breast Cancer 18(5):e1003–e1009CrossRefGoogle Scholar
  22. 22.
    Yukaya T, Saeki H, Kasagi Y et al (2015) Indocyanine green fluorescence angiography for quantitative evaluation of gastric tube perfusion in patients undergoing esophagectomy. J Am Coll Surg 221:e37–e42CrossRefGoogle Scholar
  23. 23.
    Nakashima Y, Saeki H, Yukaya T et al (2016) Blood flow assessment with indocyanine green fluorescence angiography for pedicled omental flap on cervical esophagogastric anastomosis after esophagectomy. J Am Coll Surg 222(5):e67–e69CrossRefGoogle Scholar
  24. 24.
    Tsutsumi R, Ikeda T, Nagahara H et al (2019) Efficacy of novel multispectral imaging device to determine anastomosis for esophagogastromy. J Surg Res 242:11–22CrossRefGoogle Scholar
  25. 25.
    Ikeda T, Kawano H, Hisamatsu Y et al (2013) Progression from laparoscopic-assisted to totally laparoscopic distal gastrectomy: comparison of circular stapler (i-DST) and linear stapler (BBT) for intracorporeal anastomosis. Surg Endosc 27(1):325–332CrossRefGoogle Scholar
  26. 26.
    Oki E, Tsuda Y, Saeki H et al (2014) Book-binding technique for Billroth I anastomosis during totally laparoscopic distal gastrectomy. J Am Coll Surg 219:e69–e73CrossRefGoogle Scholar
  27. 27.
    Ikeda T, Kumashiro R, Oki E et al (2015) Evaluation of techniques to prevent colorectal anastomotic leakage. J Surg Res 194(2):450–457CrossRefGoogle Scholar
  28. 28.
    Ikeda T, Kumashiro R, Taketani K et al (2015) Endoscopic evaluation of clinical colorectal anastomotic leakage. J Surg Res 193(1):126–134CrossRefGoogle Scholar
  29. 29.
    Storer E.H., Goldberg S.M., S. Nivatvongs Colon, rectum and anus (6rd ed.) Schwartz S.I., Shires G.T., Spencer F.C., Storer E.H. (Eds.), Principles of surgery, 26, McGraw-Hill, New York (1994), pp. 1191-1306.Google Scholar
  30. 30.
    Gevorkian SG, Allahverdyan AE, Gevorgyan DS et al (2013) Stabilization and anomalous hydration of collagen fibril under heating. PLoS One 8(11):e78526CrossRefGoogle Scholar
  31. 31.
    Shuster S, Black MM, McVitie E (1975) The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol 93:639–643CrossRefGoogle Scholar
  32. 32.
    Culav EM, Clark CH, Merrilees MJ (1999) Connective tissues: matrix composition and its relevance to physical therapy. Phys Ther 79:308–319PubMedGoogle Scholar
  33. 33.
    Sasaki S, Ikeda T, Okihara SI et al (2019) Principles and development of collagen-mediated tissue fusion induced by laser irradiation. Sci Rep 9(1):9383CrossRefGoogle Scholar
  34. 34.
    Takamori S, Tagawa T, Toyokawa G et al (2018) The significant influence of having children on the postoperative prognosis of patients with nonsmall cell lung cancer: a propensity score-matched analysis. Cancer Med 7:2860CrossRefGoogle Scholar
  35. 35.
    Williams H, Pembroke A (1989) Sniffer dogs in the melanoma clinic? Lancet 1(8640):8734Google Scholar
  36. 36.
    Willis CM, Church SM, Guest CM et al (2004) Olfactory detection of human bladder cancer by dogs: proof of principle study. BMJ 329(7468):712CrossRefGoogle Scholar
  37. 37.
    Cornu JN, Cancel-Tassin G, Ondet V et al (2011) Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur Urol 59(2):197–201CrossRefGoogle Scholar
  38. 38.
    Ehmann R, Boedeker E, Friedrich U et al (2012) Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J 39(3):669–676CrossRefGoogle Scholar
  39. 39.
    Sonoda H, Kohnoe S, Yamazato T et al (2011) Colorectal cancer screening with odour material by canine scent detection. Gut 60:814–819CrossRefGoogle Scholar
  40. 40.
    Huang De, Li T, Li X et al (2014) HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep 8:1930–1942CrossRefGoogle Scholar
  41. 41.
    Onkenhout W, Venizelos V, van der Poel PF et al (1995) Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders. Clin Chem 41(10):1467–1474PubMedGoogle Scholar
  42. 42.
    Takenaka K, Kawahara N, Yamamoto K et al (1996) Results of 280 liver resections for hepatocellular carcinoma. Arch Surg 131(1):71–76CrossRefGoogle Scholar
  43. 43.
    Shirabe K, Takeishi K, Taketomi A et al (2011) Improvement of long-term outcomes in hepatitis C virus antibody-positive patients with hepatocellular carcinoma after hepatectomy in the modern era. World J Surg 35(5):1072–1084CrossRefGoogle Scholar
  44. 44.
    Yoshizumi T, Ikegami T, Yoshiya S et al (2013) Impact of tumor size, number of tumors and neutrophil-to-lymphocyte ratio in liver transplantation for recurrent hepatocellular carcinoma. Hepatol Res 43(7):709–716CrossRefGoogle Scholar
  45. 45.
    Harimoto N, Shirabe K, Ikegami T et al (2015) Postoperative complications are predictive of poor prognosis in hepatocellular carcinoma. J Surg Res 199(2):470–477CrossRefGoogle Scholar
  46. 46.
    Itoh S, Morita K, Ueda S et al (2009) Long-term results of hepatic resection combined with intraoperative local ablation therapy for patients with multinodular hepatocellular carcinomas. Ann Surg Oncol 16(12):3299–3307CrossRefGoogle Scholar
  47. 47.
    Ikeda T, Mano Y, Morita K et al (2013) Pure laparoscopic hepatectomy in semiprone position for right hepatic major resection. J Hepatobiliary Pancreat Sci 20:145–150CrossRefGoogle Scholar
  48. 48.
    Sugimachi K, Shirabe K, Taketomi A et al (2010) Successful curative extra-corporeal hepatic resection for far-advanced hepatocellular carcinoma in an adolescent patient. Liver Transplant 16:685–687Google Scholar
  49. 49.
    Valsamakis A (2007) Molecular testing in the diagnosis and management of chronic hepatitis B. Clin Microbiol Rev 20:426–439CrossRefGoogle Scholar
  50. 50.
    Kurihara T, Fukuhara T, Ono C et al (2017) Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9. Sci Rep 7:6122CrossRefGoogle Scholar
  51. 51.
    Grothey A, Sobrero AF, Shields AF et al (2018) Duration of adjuvant chemotherapy for stage III colon cancer. N Engl J Med 378:1177–1188CrossRefGoogle Scholar
  52. 52.
    Yoshino T, Yamanaka T, Oki E et al (2019) Efficacy and long-term peripheral sensory neuropathy for 3 versus 6 months of oxaliplatin-based adjuvant chemotherapy for stage III colon cancer: results of the randomised open-label, non-inferiority, Japanese phase 3 ACHIEVE trial, part of the IDEA study collaboration. JAMA OncolGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2019

Authors and Affiliations

  • Yoshihiko Maehara
    • 1
    Email author
  • Yuji Soejima
    • 2
    • 3
  • Tomoharu Yoshizumi
    • 2
  • Naoyuki Kawahara
    • 2
  • Eiji Oki
    • 2
  • Hiroshi Saeki
    • 2
    • 4
  • Tomohiko Akahoshi
    • 2
    • 5
  • Toru Ikegami
    • 2
  • Yo-ichi Yamashita
    • 2
    • 6
  • Tadashi Furuyama
    • 2
  • Keishi Sugimachi
    • 2
    • 7
  • Noboru Harada
    • 2
  • Tetsuzo Tagawa
    • 2
  • Norifumi Harimoto
    • 2
    • 4
  • Shinji Itoh
    • 2
  • Hideto Sonoda
    • 2
    • 8
  • Koji Ando
    • 2
  • Yuichiro Nakashima
    • 2
  • Yoshihiro Nagao
    • 2
  • Nami Yamashita
    • 2
  • Yuta Kasagi
    • 2
    • 9
  • Takafumi Yukaya
    • 2
    • 10
  • Takeshi Kurihara
    • 2
  • Ryosuke Tsutsumi
    • 2
  • Shinkichi Takamori
    • 2
  • Shun Sasaki
    • 2
  • Tetsuo Ikeda
    • 11
  • Yoshikazu Yonemitsu
    • 12
  • Takasuke Fukuhara
    • 13
  • Hiroyuki Kitao
    • 14
  • Makoto Iimori
    • 14
  • Yuki Kataoka
    • 14
    • 15
  • Takeshi Wakasa
    • 14
    • 15
  • Masami Suzuki
    • 16
  • Koji Teraishi
    • 12
    • 17
  • Yasuto Yoshida
    • 18
  • Masaki Mori
    • 2
  1. 1.Kyushu Central Hospital of the Mutual Aid Association of Public School TeachersFukuokaJapan
  2. 2.Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Department of SurgeryShinshu University School of MedicineMatsumotoJapan
  4. 4.Department of General Surgical ScienceGunma University Graduate School of MedicineGunmaJapan
  5. 5.Department of Advanced Medical Initiatives, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  6. 6.Department of Gastroenterological SurgeryKumamoto University Graduate School of Medical SciencesKumamotoJapan
  7. 7.Department of Hepatobiliary-Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
  8. 8.Department of SurgeryImari Arita Kyoritsu HospitalSagaJapan
  9. 9.Department of SurgeryFukuoka Higashi Medical CenterFukuokaJapan
  10. 10.Department of SurgeryIizuka HospitalIizukaJapan
  11. 11.Endoscopy and Endoscopic SurgeryFukuoka Dental CollegeFukuokaJapan
  12. 12.R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharma-Ceutical SciencesKyushu UniversityFukuokaJapan
  13. 13.Department of Molecular Virology, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan
  14. 14.Department of Molecular Cancer Biology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  15. 15.Taiho Pharmaceutical Co. Ltd.TokyoJapan
  16. 16.Chugai Pharmaceutical Co., Ltd.KanagawaJapan
  17. 17.Ono Pharmaceutical Co., Ltd.OsakaJapan
  18. 18.Yakult Central InstituteTokyoJapan

Personalised recommendations