International Journal of Clinical Oncology

, Volume 24, Issue 10, pp 1171–1181 | Cite as

Immune checkpoint inhibitor-induced sarcoidosis-like granulomas

  • Pooja H. Rambhia
  • Barbara Reichert
  • Jeffrey F. Scott
  • Ashley N. Feneran
  • Jordan A. Kazakov
  • Kord Honda
  • Henry Koon
  • Meg R. GerstenblithEmail author
Review Article


Immune checkpoint inhibitors targeting the cytotoxic T lymphocyte-associated antigen-4 and programmed cell death-1 receptors have transformed the treatment of melanoma and other cancers. These therapies are associated with a number of side effects, including immune-related adverse events. Sarcoidosis-like granulomas (SLGs) are important immune checkpoint inhibitor-related reactions to recognize as SLGs can mimic disease progression and accordingly impact treatment decisions. We systematically review reports of immune checkpoint inhibitor-induced SLGs in cancer patients and discuss potential underlying pathophysiological mechanisms.


Drug reactions Melanoma Immune checkpoint inhibitor PD-1 CTLA-4 Sarcoidosis-like granuloma 



Bronchoalveolar lavage


Cytotoxic T-lymphocyte-associated antigen 4


Interferon gamma




Immune-related adverse events


Not reported


Programmed death-1


Sarcoidosis-like granuloma


T-cell receptor


T helper-1


T helper-17


Tumor necrosis factor alpha



This study was funded by the Char and Chuck Fowler Foundation, RES119774.

Compliance with ethical standards

Conflict of interest

Author PHR declares that she has no conflict of interest. Author BR declares that she has no conflict of interest. Author JFS declares that he has no conflict of interest. Author ANF declares that she has no conflict of interest. Author JAK declares that he has no conflict of interest. Author KH declares that he has no conflict of interest. Author HK owns stock in Company BMS. Author MRG has received research grants from the Char and Chuck Fowler Family Foundation.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Garon EB, Rizvi NA, Hui R et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028CrossRefGoogle Scholar
  2. 2.
    Mehra R, Seiwert TY, Gupta S et al (2018) Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: pooled analyses after long-term follow-up in KEYNOTE-012. Br J Cancer 119(2):153–159CrossRefGoogle Scholar
  3. 3.
    Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813CrossRefGoogle Scholar
  4. 4.
    Ferris RL, Blumenschein GJ, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867CrossRefGoogle Scholar
  5. 5.
    Borcherding N, Kolb R, Gullicksrud J et al (2018) Keeping tumors in check: a mechanistic review of clinical response and resistance to immune checkpoint blockade in cancer. J Mol Biol 430(14):2014–2029CrossRefGoogle Scholar
  6. 6.
    Taube JM, Anders RA, Young GD et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127ra37CrossRefGoogle Scholar
  7. 7.
    Kaunitz GJ, Cottrell TR, Lilo M et al (2017) Melanoma subtypes demonstrate distinct PD-L1 expression profiles. Lab Investig 97(9):1063–1071CrossRefGoogle Scholar
  8. 8.
    Okazaki T, Chikuma S, Iwai Y et al (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14(12):1212–1218CrossRefGoogle Scholar
  9. 9.
    Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532CrossRefGoogle Scholar
  10. 10.
    Le Burel S, Champiat S, Mateus C et al (2017) Prevalence of immune-related systemic adverse events in patients treated with anti-programmed cell death 1/anti-programmed cell death-ligand 1 agents: a single-centre pharmacovigilance database analysis. Eur J Cancer 82:34–44CrossRefGoogle Scholar
  11. 11.
    Eckert A, Schoeffler A, Dalle S et al (2009) Anti-CTLA4 monoclonal antibody induced sarcoidosis in a metastatic melanoma patient. Dermatology 218(1):69–70CrossRefGoogle Scholar
  12. 12.
    Berthod G, Lazor R, Letovanec I et al (2012) Pulmonary sarcoid-like granulomatosis induced by ipilimumab. J Clin Oncol 30(17):e156–e159CrossRefGoogle Scholar
  13. 13.
    van den Eertwegh AJM, Versluis J, van den Berg HP et al (2012) Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 13(5):509–517CrossRefGoogle Scholar
  14. 14.
    Vogel WV, Guislain A, Kvistborg P et al (2012) Ipilimumab-induced sarcoidosis in a patient with metastatic melanoma undergoing complete remission. J Clin Oncol 30(2):e7–e10CrossRefGoogle Scholar
  15. 15.
    Wilgenhof S, Morlion V, Seghers AC et al (2012) Sarcoidosis in a patient with metastatic melanoma sequentially treated with anti-CTLA-4 monoclonal antibody and selective BRAF inhibitor. Anticancer Res 32(4):1355–1359Google Scholar
  16. 16.
    Reule RB, North JP (2013) Cutaneous and pulmonary sarcoidosis-like reaction associated with ipilimumab. J Am Acad Dermatol 69(5):e272–e273CrossRefGoogle Scholar
  17. 17.
    Tissot C, Carsin A, Freymond N et al (2013) Sarcoidosis complicating anti-cytotoxic T-lymphocyte-associated antigen-4 monoclonal antibody biotherapy. Eur Respir J 41(1):246–247CrossRefGoogle Scholar
  18. 18.
    Andersen R, Norgaard P, Al-Jailawi MKM et al (2014) Late development of splenic sarcoidosis-like lesions in a patient with metastatic melanoma and long-lasting clinical response to ipilimumab. Oncoimmunology 3(8):e954506CrossRefGoogle Scholar
  19. 19.
    Murphy KP, Kennedy MP, Barry JE et al (2014) New-onset mediastinal and central nervous system sarcoidosis in a patient with metastatic melanoma undergoing CTLA4 monoclonal antibody treatment. Oncol Res Treat 37(6):351–353CrossRefGoogle Scholar
  20. 20.
    Firwana B, Ravilla R, Raval M et al (2017) Sarcoidosis-like syndrome and lymphadenopathy due to checkpoint inhibitors. J Oncol Pharm Pract 23(8):620–624CrossRefGoogle Scholar
  21. 21.
    Martinez Leborans L, Esteve Martinez A, Victoria Martinez AM et al (2016) Cutaneous sarcoidosis in a melanoma patient under Ipilimumab therapy. Dermatol Ther 29(5):306–308CrossRefGoogle Scholar
  22. 22.
    Toumeh A, Sakhi R, Shah S et al (2016) Ipilimumab-induced granulomatous disease occurring simultaneously with disease progression in a patient with metastatic melanoma. Am J Ther 23(4):e1068–e1071CrossRefGoogle Scholar
  23. 23.
    Nandavaram S, Nadkarni A (2018) Ipilimumab-induced sarcoidosis and thyroiditis. Am J Ther 25(3):e379–e380CrossRefGoogle Scholar
  24. 24.
    Cotliar J, Querfeld C, Boswell WJ et al (2016) Pembrolizumab-associated sarcoidosis. JAAD Case Rep 2(4):290–293CrossRefGoogle Scholar
  25. 25.
    Cousin S, Toulmonde M, Kind M et al (2016) Pulmonary sarcoidosis induced by the anti-PD1 monoclonal antibody pembrolizumab. Ann Oncol Off J Eur Soc Med Oncol 27(6):1178–1179CrossRefGoogle Scholar
  26. 26.
    Danlos F-X, Pages C, Baroudjian B et al (2016) Nivolumab-induced sarcoid-like granulomatous reaction in a patient with advanced melanoma. Chest 149(5):e133–e136CrossRefGoogle Scholar
  27. 27.
    Montaudie H, Pradelli J, Passeron T et al (2017) Pulmonary sarcoid-like granulomatosis induced by nivolumab. Br J Dermatol 176(4):1060–1063CrossRefGoogle Scholar
  28. 28.
    Birnbaum MR, Ma MW, Fleisig S et al (2017) Nivolumab-related cutaneous sarcoidosis in a patient with lung adenocarcinoma. JAAD Case Rep 3(3):208–211CrossRefGoogle Scholar
  29. 29.
    Burillo-Martinez S, Morales-Raya C, Prieto-Barrios M et al (2017) Pembrolizumab-induced extensive panniculitis and nevus regression: two novel cutaneous manifestations of the post-immunotherapy granulomatous reactions spectrum. JAMA Dermatol 153(7):721–722CrossRefGoogle Scholar
  30. 30.
    Fakhri G, Akel R, Salem Z et al (2017) Pulmonary sarcoidosis activation following neoadjuvant pembrolizumab plus chemotherapy combination therapy in a patient with non-small cell lung cancer: a case report. Case Rep Oncol 10(3):1070–1075CrossRefGoogle Scholar
  31. 31.
    Lainez S, Tissot C, Cottier M et al (2017) EBUS-TBNA can distinguish sarcoid-like side effect of nivolumab treatment from tumor progression in non-small cell lung cancer. Respiration 94(6):518–521CrossRefGoogle Scholar
  32. 32.
    Lise Q-K, Audrey A-G (2017) Multifocal choroiditis as the first sign of systemic sarcoidosis associated with pembrolizumab. Am J Ophthalmol Case Rep 5:92–93CrossRefGoogle Scholar
  33. 33.
    Lomax AJ, McGuire HM, McNeil C et al (2017) Immunotherapy-induced sarcoidosis in patients with melanoma treated with PD-1 checkpoint inhibitors: case series and immunophenotypic analysis. Int J Rheum Dis 20(9):1277–1285CrossRefGoogle Scholar
  34. 34.
    Zhang M, Schembri G (2017) Nivolumab-induced development of pulmonary sarcoidosis in renal cell carcinoma. Clin Nucl Med 42(9):728–729CrossRefGoogle Scholar
  35. 35.
    Dimitriou F, Frauchiger AL, Urosevic-Maiwald M et al (2018) Sarcoid-like reactions in patients receiving modern melanoma treatment. Melanoma Res. 28(3):230–236Google Scholar
  36. 36.
    Laroche A, Alarcon Chinchilla E, Bourgeault E et al (2018) Erythema nodosum as the initial presentation of nivolumab-induced sarcoidosis-like reaction. J Cutan Med Surg 22:627–629CrossRefGoogle Scholar
  37. 37.
    Nishino M, Sholl LM, Awad MM et al (2018) Sarcoid-like granulomatosis of the lung related to immune-checkpoint inhibitors: distinct clinical and imaging features of a unique immune-related adverse event. Cancer Immunol Res 6(6):630–635CrossRefGoogle Scholar
  38. 38.
    Noguchi S, Kawachi H, Yoshida H et al (2018) Sarcoid-like granulomatosis induced by nivolumab treatment in a lung cancer patient. Case Rep Oncol 11(2):562–566CrossRefGoogle Scholar
  39. 39.
    Smith RJ, Mitchell TC, Chu EY (2018) Pembrolizumab-induced sarcoidal infusion site reaction. J Cutan Pathol 45:727–729CrossRefGoogle Scholar
  40. 40.
    Tetzlaff MT, Nelson KC, Diab A et al (2018) Granulomatous/sarcoid-like lesions associated with checkpoint inhibitors: a marker of therapy response in a subset of melanoma patients. J Immunother Cancer 6(1):14CrossRefGoogle Scholar
  41. 41.
    Wang LL, Patel G, Chiesa-Fuxench ZC et al (2018) Timing of onset of adverse cutaneous reactions associated with programmed cell death protein 1 inhibitor therapy. JAMA Dermatol 154:1057–1061CrossRefGoogle Scholar
  42. 42.
    Woodbeck R, Metelitsa AI, Naert KA (2018) Granulomatous tumoral melanosis associated with pembrolizumab therapy: a mimicker of disease progression in metastatic melanoma. Am J Dermatopathol 40(7):523–526CrossRefGoogle Scholar
  43. 43.
    Koelzer VH, Rothschild SI, Zihler D et al (2016) Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors-an autopsy study. J Immunother Cancer 4:13CrossRefGoogle Scholar
  44. 44.
    Reuss JE, Kunk PR, Stowman AM et al (2016) Sarcoidosis in the setting of combination ipilimumab and nivolumab immunotherapy: a case report and review of the literature. J Immunother Cancer 4:94CrossRefGoogle Scholar
  45. 45.
    Suozzi KC, Stahl M, Ko CJ et al (2016) Immune-related sarcoidosis observed in combination ipilimumab and nivolumab therapy. JAAD Case Rep 2(3):264–268CrossRefGoogle Scholar
  46. 46.
    Reddy SB, Possick JD, Kluger HM et al (2017) Sarcoidosis following anti-PD-1 and anti-CTLA-4 therapy for metastatic melanoma. J Immunother 40(8):307–311CrossRefGoogle Scholar
  47. 47.
    Dunn-Pirio AM, Shah S, Eckstein C (2018) Neurosarcoidosis following immune checkpoint inhibition. Case Rep Oncol 11(2):521–526CrossRefGoogle Scholar
  48. 48.
    Tan I, Malinzak M, Salama AKS (2018) Delayed onset of neurosarcoidosis after concurrent ipilimumab/nivolumab therapy. J Immunother Cancer 6(1):77CrossRefGoogle Scholar
  49. 49.
    Yatim N, Mateus C, Charles P (2018) Sarcoidosis post-anti-PD-1 therapy, mimicking relapse of metastatic melanoma in a patient undergoing complete remission. La Rev Med Interne 39(2):130–133CrossRefGoogle Scholar
  50. 50.
    Lu Y (2019) FDG PET/CT course of pembrolizumab-associated multiorgan sarcoidosis. Clin Nucl Med. 44(2):167–168CrossRefGoogle Scholar
  51. 51.
    Chen ES, Moller DR (2011) Sarcoidosis—scientific progress and clinical challenges. Nat Rev Rheumatol 7(8):457–467CrossRefGoogle Scholar
  52. 52.
    Mortaz E, Rezayat F, Amani D et al (2016) The roles of T helper 1, T helper 17 and regulatory T cells in the pathogenesis of sarcoidosis. Iran J Allergy Asthma Immunol 15(4):334–339Google Scholar
  53. 53.
    von Euw E, Chodon T, Attar N et al (2009) CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J Transl Med 7:35CrossRefGoogle Scholar
  54. 54.
    McAlees JW, Lajoie S, Dienger K et al (2015) Differential control of CD4(+) T-cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma. Eur J Immunol 45(4):1019–1029CrossRefGoogle Scholar
  55. 55.
    Abdel-Wahab N, Shah M, Suarez-Almazor ME (2016) Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS ONE 11(7):e0160221CrossRefGoogle Scholar
  56. 56.
    Verdegaal EME, de Miranda NFCC, Visser M et al (2016) Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature 536(7614):91–95CrossRefGoogle Scholar
  57. 57.
    Kristensen VN (2017) The Antigenicity of the tumor cell—context matters. N Engl J Med 376(5):491–493CrossRefGoogle Scholar
  58. 58.
    Kitano S, Nakayama T, Yamashita M (2018) Biomarkers for immune checkpoint inhibitors in melanoma. Front Oncol 8:270CrossRefGoogle Scholar
  59. 59.
    Seve P, Schott AM, Pavic M et al (2009) Sarcoidosis and melanoma: a referral center study of 1,199 cases. Dermatology 219(1):25–31CrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2019

Authors and Affiliations

  1. 1.Department of DermatologyUniversity Hospitals Cleveland Medical Center/Case Western Reserve University School of MedicineClevelandUSA
  2. 2.Pulmonary/Critical Care Division, Department of MedicineUniversity Hospitals Cleveland Medical Center/Case Western Reserve University School of MedicineClevelandUSA
  3. 3.Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandUSA
  4. 4.Department of Medicine, Hematology and Oncology DivisionUniversity Hospitals Cleveland Medical Center/Case Western Reserve University School of MedicineClevelandUSA

Personalised recommendations