Advertisement

International Journal of Clinical Oncology

, Volume 24, Issue 11, pp 1459–1467 | Cite as

Development and validation of a nomogram containing the prognostic determinants of chondrosarcoma based on the Surveillance, Epidemiology, and End Results database

  • Jun Zhang
  • Zhenyu Pan
  • Fanfan Zhao
  • Xiaojie Feng
  • Yuanchi Huang
  • Chuanyu Hu
  • Yuanjie LiEmail author
  • Jun LyuEmail author
Original Article
  • 99 Downloads

Abstract

Background

We aimed to develop and validate a reliable nomogram for predicting the disease-specific survival (DSS) of chondrosarcoma patients.

Methods

The Surveillance, Epidemiology, and End Results (SEER) database was queried from 2004 to 2015 to identify cases of histologically confirmed chondrosarcoma. Multivariate Cox regression analysis was performed to identify independent prognostic factors and construct a nomogram for predicting the 3- and 5-year DSS rates. Predictive values were compared between the new model and the American Joint Committee on Cancer (AJCC) staging system using concordance indexes (C-indexes), calibration plots, integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision curve analysis (DCA).

Results

Multivariate Cox regression identified 1180 patients, who were used to establish a nomogram based on a new model containing the predictive variables of age, socioeconomic status, tumor size, surgery status, chemotherapy status, and AJCC staging. In the nomogram, age at diagnosis is the factor with the highest risk, followed by AJCC stage IV and tumor size > 100 mm. Both the C-index and the calibration plots demonstrated the good performance of the nomogram. Moreover, both NRI and IDI were improved compared to the AJCC staging system, and also DCA demonstrated that the nomogram is clinically useful.

Conclusion

We have developed a reliable nomogram for determining the prognosis and treatment outcomes of chondrosarcoma patients that is superior to the traditional AJCC staging system.

Keywords

Nomogram Chondrosarcoma Survival SEER 

Notes

Funding

This study was funded by National Social Science Foundation of China (No. 16BGL183), and the Research Fund of Health Bureau of Xi’an (No. QFO1330).

Compliance with ethical standards

Conflict of interest

No financial interests are to be disclosed by the authors.

References

  1. 1.
    Coindre JM (2012) New WHO classification of tumours of soft tissue and bone. Ann Pathol 32(5 Suppl):S115–116.  https://doi.org/10.1016/j.annpat.2012.07.006 CrossRefPubMedGoogle Scholar
  2. 2.
    Sundaresan N, Rosen G, Boriani S (2009) Primary malignant tumors of the spine. Orthop Clin North Am 40(1):21–36.  https://doi.org/10.1016/j.ocl.2008.10.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Giuffrida AY, Burgueno JE, Koniaris LG, et al.: Chondrosarcoma in the United States (1973–2003): an analysis of 2890 cases from the SEER database. J Bone Jt Surg Am Vol 91(5), 1063–1072. doi: 10.2106/JBJS.H.00416.Google Scholar
  4. 4.
    Larsson SE, Lorentzon R (1974) The geographic variation of the incidence of malignant primary bone tumors in Sweden. The Journal of bone and joint surgery American 56(3):592–600CrossRefGoogle Scholar
  5. 5.
    Angelini A, Guerra G, Mavrogenis AF et al (2012) Clinical outcome of central conventional chondrosarcoma. J Surg Oncol 106(8):929–937.  https://doi.org/10.1002/jso.23173 CrossRefPubMedGoogle Scholar
  6. 6.
    Dong F, Shen Y, Gao F et al (2018) Nomograms to predict individual prognosis of patients with primary small cell carcinoma of the bladder. Journal of Cancer 9(7):1152–1164.  https://doi.org/10.7150/jca.23344 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yang L, Wang S, Zhou Y et al (2017) Evaluation of the 7(th) and 8(th) editions of the AJCC/UICC TNM staging systems for lung cancer in a large North American cohort. Oncotarget 8(40):66784–66795.  https://doi.org/10.18632/oncotarget.18158 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pu N, Li J, Xu Y et al (2018) Comparison of prognostic prediction between nomogram based on lymph node ratio and AJCC 8th staging system for patients with resected pancreatic head carcinoma: a SEER analysis. Cancer Manag Res 10:227–238.  https://doi.org/10.2147/CMAR.S157940 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kang JS, Lee S, Son D et al (2018) Prognostic predictability of the new American Joint Committee on Cancer 8th staging system for distal bile duct cancer: limited usefulness compared with the 7th staging system. J Hepatobiliary Pancreat Sci 25(2):124–130.  https://doi.org/10.1002/jhbp.520 CrossRefPubMedGoogle Scholar
  10. 10.
    Woo CG, Lee HC, Son SM et al (2018) Clinicopathological characteristics of costal hemangiomas: a case report and literature review. J Int Med Res.  https://doi.org/10.1177/0300060518809589 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nemecek E, Funovics PT, Hobusch GM et al (2018) C-reactive protein: an independent predictor for dedifferentiated chondrosarcoma. J Orthop Res 36(10):2797–2801.  https://doi.org/10.1002/jor.24030 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gao Z, Ren F, Song H et al (2018) Marital Status and survival of patients with chondrosarcoma: a population-based analysis. Med Sci Monit 24:6638–6648.  https://doi.org/10.12659/MSM.911673 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Arshi A, Sharim J, Park DY, et al. (2017) Chondrosarcoma of the Osseous spine: an analysis of epidemiology, patient outcomes, and prognostic factors using the SEER Registry from 1973 to 2012. Spine (Phila Pa 1976) 42(9): 644–652. doi:10.1097/BRS.0000000000001870.Google Scholar
  14. 14.
    Song K, Song J, Shi X, et al. (2018) Development and validation of nomograms predicting overall and cancer-specific survival of spinal chondrosarcoma patients. Spine (Phila Pa 1976) 43(21): E1281–E1289. doi:10.1097/BRS.0000000000002688.Google Scholar
  15. 15.
    Lin Z, Yan S, Zhang J et al (2018) A Nomogram for distinction and potential prediction of liver metastasis in breast cancer patients. Journal of Cancer 9(12):2098–2106.  https://doi.org/10.7150/jca.24445 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Balachandran VP, Gonen M, Smith JJ et al (2015) Nomograms in oncology: more than meets the eye. Lancet Oncol 16(4):e173–180.  https://doi.org/10.1016/S1470-2045(14)71116-7 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wu J, Sun H, Li J et al (2018) Increased survival of patients aged 0–29 years with osteosarcoma: a period analysis, 1984–2013. Cancer Med 7(8):3652–3661.  https://doi.org/10.1002/cam4.1659 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ma H, Sun H, Sun X (2014) Survival improvement by decade of patients aged 0–14 years with acute lymphoblastic leukemia: a SEER analysis. Sci Rep 4:4227.  https://doi.org/10.1038/srep04227 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Duchman KR, Gao YN, Miller BJ (2015) Prognostic factors for survival in patients with high-grade osteosarcoma using the Surveillance, epidemiology, and end results (SEER) program database. Cancer Epidemiol 39(4):593–599CrossRefGoogle Scholar
  20. 20.
    Cook NR (2008) Comments on 'Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond' by M. J. Pencina et al., Statistics in Medicine (DOI: 10.1002/sim.2929) . Stat Med 27(2):191–195.  https://doi.org/10.1002/sim.2987 CrossRefPubMedGoogle Scholar
  21. 21.
    Vickers AJ, Elkin EB (2006) Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 26(6):565–574.  https://doi.org/10.1177/0272989X06295361 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30.  https://doi.org/10.3322/caac.21387 CrossRefGoogle Scholar
  23. 23.
    Biermann JS, Chow W, Reed DR et al (2017) NCCN guidelines insights: bone cancer, version 2.2017. J Natl Compr Canc Netw 15(2):155–167CrossRefGoogle Scholar
  24. 24.
    Delaney TF, Kepka L, Goldberg SI et al (2007) Radiation therapy for control of soft-tissue sarcomas resected with positive margins. Int J Radiat Oncol Biol Phys 67(5):1460–1469.  https://doi.org/10.1016/j.ijrobp.2006.11.035 CrossRefPubMedGoogle Scholar
  25. 25.
    Bovee JV, Cleton-Jansen AM, Taminiau AH et al (2005) Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol 6(8):599–607.  https://doi.org/10.1016/S1470-2045(05)70282-5 CrossRefPubMedGoogle Scholar
  26. 26.
    Chen JC, Fong YC, Tang CH (2013) Novel strategies for the treatment of chondrosarcomas: targeting integrins. Biomed Res Int 2013:396839.  https://doi.org/10.1155/2013/396839 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cates JM (2017) Comparison of the AJCC, MSTS, and Modified Spanier systems for clinical and pathologic staging of osteosarcoma. Am J Surg Pathol 41(3):405–413.  https://doi.org/10.1097/PAS.0000000000000774 CrossRefPubMedGoogle Scholar
  28. 28.
    Kim HS, Bindiganavile SS, Han I (2015) Oncologic outcome after local recurrence of chondrosarcoma: analysis of prognostic factors. J Surg Oncol 111(8):957–961.  https://doi.org/10.1002/jso.23925 CrossRefPubMedGoogle Scholar
  29. 29.
    Liu RZ, Zhao ZR, Ng CS (2016) Statistical modelling for thoracic surgery using a nomogram based on logistic regression. J Thorac Dis 8(8):E731–736.  https://doi.org/10.21037/jtd.2016.07.91 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen LD, Liang JY, Wu H et al (2018) Multiparametric radiomics improve prediction of lymph node metastasis of rectal cancer compared with conventional radiomics. Life Sci 208:55–63.  https://doi.org/10.1016/j.lfs.2018.07.007 CrossRefPubMedGoogle Scholar
  31. 31.
    Tan X, Ma Z, Yan L et al (2018) Radiomics nomogram outperforms size criteria in discriminating lymph node metastasis in resectable esophageal squamous cell carcinoma. Eur Radiol.  https://doi.org/10.1007/s00330-018-5581-1 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Asuncion Esteve-Pastor M, Miguel Rivera-Caravaca J, Roldan V et al (2017) Long-term bleeding risk prediction in 'real world' patients with atrial fibrillation: comparison of the HAS-BLED and ABC-Bleeding risk scores. Thromb Haemost 117(10):1848–1858.  https://doi.org/10.1160/TH17-07-0478 CrossRefGoogle Scholar
  33. 33.
    Esteve-Pastor MA, Rivera-Caravaca JM, Roldan V et al (2017) Long-term bleeding risk prediction in 'real world' patients with atrial fibrillation: comparison of the HAS-BLED and ABC-Bleeding risk scores. The Murcia atrial fibrillation project. Thromb Haemost 117(10):1848–1858.  https://doi.org/10.1160/TH17-07-0478 CrossRefPubMedGoogle Scholar
  34. 34.
    Garcia-Fernandez A, Roldan V, Rivera-Caravaca JM et al (2017) Does von Willebrand factor improve the predictive ability of current risk stratification scores in patients with atrial fibrillation? Sci Rep 7:41565.  https://doi.org/10.1038/srep41565 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rodrigues G, Gonzalez-Maldonado S, Bauman G et al (2013) A statistical comparison of prognostic index systems for brain metastases after stereotactic radiosurgery or fractionated stereotactic radiation therapy. Clin Oncol (R Coll Radiol) 25(4):227–235.  https://doi.org/10.1016/j.clon.2012.11.006 CrossRefGoogle Scholar
  36. 36.
    Chen D, Chen CH, Zhang LL et al (2018) Chondrosarcoma of the Osseous spine treated by surgery with or without radiotherapy: a propensity score matched and grade/stage-stratified study. Clin Spine Surg 31(6):E310–E316.  https://doi.org/10.1097/BSD.0000000000000666 CrossRefPubMedGoogle Scholar
  37. 37.
    van Praag Veroniek VM, Rueten-Budde AJ, Ho V et al (2018) Incidence, outcomes and prognostic factors during 25 years of treatment of chondrosarcomas. Surg Oncol 27(3):402–408.  https://doi.org/10.1016/j.suronc.2018.05.009 CrossRefPubMedGoogle Scholar
  38. 38.
    Zeng X, Zhang Y, Kwong JS et al (2015) The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. Journal of evidence-based medicine 8(1):2–10.  https://doi.org/10.1111/jebm.12141 CrossRefPubMedGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2019

Authors and Affiliations

  1. 1.Clinical Research CenterThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  2. 2.School of Public HealthXi’an Jiaotong University Health Science CenterXi’anChina
  3. 3.Department of OrthopaedicsBaoji Municipal Central HospitalBaojiChina
  4. 4.Department of PharmacyThe Affiliated Children Hospital of Xi’an Jiaotong UniversityXi’anChina
  5. 5.Center of Stomatology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  6. 6.Department of Human Anatomy, Histology and Embryology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
  7. 7.Institute of Evidence-Based Medicine and Knowledge TranslationHenan UniversityKaifengChina

Personalised recommendations