International Journal of Clinical Oncology

, Volume 24, Issue 1, pp 41–45 | Cite as

Significance of re-biopsy of histological tumor samples in advanced non-small-cell lung cancer in clinical practice

  • Katsuyuki Hotta
  • Kiichiro Ninomiya
  • Eiki Ichihara
  • Katsuyuki Kiura
Review Article


The significance of evaluating oncogenes, including EGFR mutations, ALK abnormalities, and PD-L1 expression has become broadly recognized with recent advances in molecular biology. It is now extremely important to investigate tumor oncogene status in each patient at the initial diagnosis. By contrast, the significance of conducting a re-biopsy in the salvage setting has not been systematically reviewed. This review reports that the significance of a re-biopsy varies depending on the clinical situation.


Lung cancer Treatment Re-biopsy 



KH has received honoraria outside the current work from AstraZeneca, Ono Pharmaceutical, Astellas, Novartis, BMS, MSD, Eli Lilly Japan, Daiichi-Sankyo Pharmaceutical, Boehringer-Ingelheim, Nihon Kayaku, Taiho Pharmaceutical, and Chugai Pharmaceutical. KH has also received research funding outside the current work from AstraZeneca, Boehringer-Ingelheim, Ono Pharmaceutical, Astellas, Novartis, BMS, Eli Lilly Japan, MSD, and Chugai Pharmaceutical. KK has received honoraria from Eli Lilly Japan, Nihon Kayaku, AstraZeneca, Daiichi-Sankyo Pharmaceutical, Chugai Pharmaceutical, Taiho Pharmaceutical, and Sanofi-Aventis.

Author contributions

KH and others: collection, assembly, analysis, and interpretation of data. Drafting of the manuscript and critically reviewing or revising the manuscript for important intellectual content. All authors have approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

No other authors declare any conflicts of interest regarding this study.


  1. 1.
    Hotta K, Matsuo K, Ueoka H et al (2004) Meta-analysis of randomized clinical trials comparing cisplatin to carboplatin in patients with advanced non-small-cell lung cancer. J Clin Oncol 22:3852–3859CrossRefGoogle Scholar
  2. 2.
    Hotta K, Matsuo K, Ueoka H et al (2004) Addition of platinum compounds to a new agent in patients with advanced non-small-cell lung cancer: a literature based meta-analysis of randomised trials. Ann Oncol 15:1782–1789CrossRefGoogle Scholar
  3. 3.
    Hotta K, Matsuo K (2007) Long-standing debate on cisplatin- versus carboplatin-based chemotherapy in the treatment of advanced non-small-cell lung cancer. J Thorac Oncol 2:96CrossRefGoogle Scholar
  4. 4.
    Hotta K, Fujiwara Y, Matsuo K et al (2007) Recent improvement in the survival of patients with advanced non small cell lung cancer enrolled in phase III trials of first-line, systemic chemotherapy. Cancer 109:939–948CrossRefGoogle Scholar
  5. 5.
    Hotta K, Takigawa N, Hisamoto-Sato A et al (2013) Reappraisal of short-term low-volume hydration in cisplatin-based chemotherapy: results of a prospective feasibility study in advanced lung cancer in the Okayama Lung Cancer Study Group Trial 1002. Jpn J Clin Oncol 43:1115–1123CrossRefGoogle Scholar
  6. 6.
    Ninomiya K, Hotta K, Hisamoto-Sato A et al (2016) Short-term low-volume hydration in cisplatin-based chemotherapy for patients with lung cancer: the second prospective feasibility study in the Okayama Lung Cancer Study Group Trial 1201. Int J Clin Oncol 21:81–87CrossRefGoogle Scholar
  7. 7.
    Hotta K, Ninomiya K, Takigawa N et al (2015) Reappraisal of short-term low-volume hydration in cisplatin-based chemotherapy; hoping for it as a public domain. Jpn J Clin Oncol 45:603–604Google Scholar
  8. 8.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139CrossRefGoogle Scholar
  9. 9.
    Kris MG, Johnson BE, Berry LD et al (2014) Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311:1998–2006CrossRefGoogle Scholar
  10. 10.
    Hotta K, Kiura K, Toyooka S et al (2007) Clinical significance of epidermal growth factor receptor gene mutations on treatment outcome after first-line cytotoxic chemotherapy in Japanese patients with non-small-cell lung cancer. J Thorac Oncol 2:632–637CrossRefGoogle Scholar
  11. 11.
    Mok TS, Wu Y-L, Ahn M-J et al (2017) AURA3 Investigators. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 376:629–640CrossRefGoogle Scholar
  12. 12.
    Jänne PA, Yang JC, Kim DW et al (2015) AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372:1689–1699CrossRefGoogle Scholar
  13. 13.
    Hata A, Katakami N, Yoshioka H et al (2015) Spatiotemporal T790M Heterogeneity in individual patients with EGFR-mutant non-small-cell lung cancer after acquired resistance to EGFR-TKI. J Thorac Oncol 10:1553–1559CrossRefGoogle Scholar
  14. 14.
    Ichihara E, Hotta K, Kubo T et al (2018) Clinical significance of repeat rebiopsy in detecting the EGFR T790M secondary mutation in patients with non-small cell lung cancer. Oncotarget 9(50):29525–29531CrossRefGoogle Scholar
  15. 15.
    Hata A, Masago K, Katakami N et al (2014) Spatiotemporal T790M heterogeneity in a patient with EGFR-mutant non-small-cell lung cancer. J Thorac Oncol 9:e64–e65CrossRefGoogle Scholar
  16. 16.
    Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T et al (2018) FLAURA Investigators. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med 378:113–125CrossRefGoogle Scholar
  17. 17.
    National Comprehensive Cancer Network homepage. Accessed 5 May 2018
  18. 18.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30CrossRefGoogle Scholar
  19. 19.
    Tokaca N, Wotherspoon A, Nicholson AG et al (2017) Lack of response to nivolumab in a patient with EGFR-mutant non-small cell lung cancer adenocarcinoma sub-type transformed to small cell lung cancer. Lung Cancer 111:65–68CrossRefGoogle Scholar
  20. 20.
    Peters S, Camidge DR, Shaw AT et al (2017) ALEX Trial Investigators. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med 377:829–838CrossRefGoogle Scholar
  21. 21.
    Hida T, Nokihara H, Kondo M et al (2017) Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet 390:29–39CrossRefGoogle Scholar
  22. 22.
    Horinouchi H, Maemondo M, Hida T et al (2017) Phase 2 study of ceritinib in patients with ALK + NSCLC with prior alectinib treatment in Japan: ASCEND-9. J Thorac Oncol 12(Supple 2):S1952–S1953CrossRefGoogle Scholar
  23. 23.
    Isozaki H, Hotta K, Ichihara E et al (2016) Protocol design for the bench to bed trial in alectinib-refractory non-small-cell lung cancer patients harboring the EML4-ALK fusion gene (ALRIGHT/OLCSG1405). Clin Lung Cancer 17:602–605CrossRefGoogle Scholar
  24. 24.
    Gainor JF, Dardaei L, Yoda S et al (2016) Molecular mechanisms of resistance to first- and second-Generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov 6:1118–1133CrossRefGoogle Scholar
  25. 25.
    Reck M, Rodríguez-Abreu D, Robinson AG et al (2016) KEYNOTE-024 Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833CrossRefGoogle Scholar
  26. 26.
    Sheng J, Fang W, Yu J et al (2016) Expression of programmed death ligand-1 on tumor cells varies pre and post chemotherapy in non-small cell lung cancer. Sci Rep 6:20090CrossRefGoogle Scholar
  27. 27.
    Song Z, Yu X, Zhang Y (2016) Altered expression of programmed death-ligand 1 after neo-adjuvant chemotherapy in patients with lung squamous cell carcinoma. Lung Cancer 99:166–171CrossRefGoogle Scholar
  28. 28.
    Rittmeyer A, Barlesi F, Waterkamp D et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–265CrossRefGoogle Scholar
  29. 29.
    Gadgeel S, Kowanetz F, Zou W et al Clinical efficacy of atezolizumab (Atezo) in PD-L1 subgroups defined by SP142 and 22C3 IHC assays in 2L + NSCLC: Results from the randomized OAK study. ESMO 2017 (Abs 1296O)Google Scholar
  30. 30.
    Herbst RS, Baas P, Kim DW et al (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550CrossRefGoogle Scholar
  31. 31.
    Gandhi L, Rodriguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 378(22):2078–2092CrossRefGoogle Scholar
  32. 32.
    Kato Y, Hotta K, Takigawa N et al (2014) Factor associated with failure to administer subsequent treatment after progression in the first-line chemotherapy in EGFR-mutant non-small cell lung cancer: Okayama Lung Cancer Study Group experience. Cancer Chemother Pharmacol 73:943–950CrossRefGoogle Scholar
  33. 33.
    Hotta K, Kiura K, Tabata M et al (2014) A Survey of Japanese thoracic oncologists’perception of diagnostic and treatment strategies for EGFR-mutant or EML4-ALK-fusion non-small cell lung cancer. Chest 146:e222–e225CrossRefGoogle Scholar
  34. 34.
    Hotta K, Tabata M, Kiura K et al (2007) Gefitinib induces premature senescence in non-small-cell lung cancer cells with or without EGFR gene mutation. Oncol Rep 17:313–317Google Scholar
  35. 35.
    Gainor JF, Shaw AT, Sequist LV et al (2016) EGFR Mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res 22:4585–4593CrossRefGoogle Scholar
  36. 36.
    Kim TJ, Hong SA, Kim O et al (2017) Changes in PD-L1 expression according to tumor infiltrating lymphocytes of acquired EGFR-TKI resistant EGFR-mutant non-small-cell lung cancer. Oncotarget 8:107630–107639Google Scholar
  37. 37.
    Kowanetz M, Socinski MA, Zou W et al (2018) IMpower150: Efficacy of atezolizumab plus bevacizumab and chemotherapy in 1L metastatic nonsquamous NSCLC across key subgroups. Presented at: 2018 AACR Annual Meeting, 2018; Chicago, Illinois. Abstract CT076Google Scholar
  38. 38.
    Haratani K, Hayashi H, Tanaka T et al (2017) Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol 28:1532–1539CrossRefGoogle Scholar

Copyright information

© Japan Society of Clinical Oncology 2018

Authors and Affiliations

  • Katsuyuki Hotta
    • 1
    • 2
  • Kiichiro Ninomiya
    • 1
  • Eiki Ichihara
    • 1
  • Katsuyuki Kiura
    • 1
  1. 1.Department of Respiratory MedicineOkayama University HospitalOkayamaJapan
  2. 2.Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan

Personalised recommendations