Advertisement

The role of haptoglobin and hemopexin in the prevention of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage: a review of current literature

  • Sean GriffithsEmail author
  • Jeremy Clark
  • Alexios A Adamides
  • James Ziogas
Review
  • 33 Downloads

Abstract

Delayed cerebral ischaemia (DCI) after aneurysmal subarachnoid haemorrhage (aSAH) is a major cause of mortality and morbidity. The pathophysiology of DCI after aSAH is thought to involve toxic mediators released from lysis of red blood cells within the subarachnoid space, including free haemoglobin and haem. Haptoglobin and hemopexin are endogenously produced acute phase proteins that are involved in the clearance of these toxic mediators. The aim of this review is to investigate the pathophysiological mechanisms involved in DCI and the role of both endogenous as well as exogenously administered haptoglobin and hemopexin in the prevention of DCI.

Keywords

Haptoglobin Hemopexin Haem Haemoglobin Aneurysmal subarachnoid haemorrhage Delayed cerebral ischaemia 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Foreman B (2016) The pathophysiology of delayed cerebral ischemia. J Clin Neurophysiol 33(3):174–182CrossRefPubMedGoogle Scholar
  2. 2.
    Phillips TJ, Dowling RJ, Yan B, Laidlaw JD, Mitchell PJ (2011) Does treatment of ruptured intracranial aneurysms within 24 hours improve clinical outcome? Stroke. 42(7):1936–1945CrossRefPubMedGoogle Scholar
  3. 3.
    Rawal S, Alcaide-Leon P, Macdonald RL, Rinkel GJE, Victor JC, Krings T et al (2017) Meta-analysis of timing of endovascular aneurysm treatment in subarachnoid haemorrhage: inconsistent results of early treatment within 1 day. J Neurol Neurosurg Psychiatry 88(3):241–248CrossRefPubMedGoogle Scholar
  4. 4.
    Laidlaw JD, Siu KH (2002) Aggressive surgical treatment of elderly patients following subarachnoid haemorrhage: management outcome results. J Clin Neurosci 9(4):404–410CrossRefPubMedGoogle Scholar
  5. 5.
    Sandström N, Yan B, Dowling R, Laidlaw J, Mitchell P (2013) Comparison of microsurgery and endovascular treatment on clinical outcome following poor-grade subarachnoid hemorrhage. J Clin Neurosci 20(9):1213–1218CrossRefPubMedGoogle Scholar
  6. 6.
    Scott Richard B, Eccles F, Molyneux Andrew J, Kerr Richard SC, Rothwell Peter M, Carpenter K (2010) Improved cognitive outcomes with endovascular coiling of ruptured intracranial aneurysms. Stroke. 41(8):1743–1747CrossRefPubMedGoogle Scholar
  7. 7.
    Lindgren A, Vergouwen MDI, van der Schaaf I, Algra A, Wermer M, Clarke MJ, Rinkel GJ (2018) Endovascular coiling versus neurosurgical clipping for people with aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 8Google Scholar
  8. 8.
    Teo M, Guilfoyle MR, Turner C, Kirkpatrick PJ, Kirkpatrick PJ, Turner CL, Murray GD, Hutchinson PJ, Teasdale G, Murray GD, Kirkpatrick PJ, Mendelow AD, Muir K, Smith M, McCabe P, Pearson J, Ford G, Vail A, King A, Tyrrell P, Richards H, Bond S, Kirkpatrick PJ, Turner CL, Smith C, Warburton E, Kirkpatrick PJ, Turner CL, Smith C, Tseng M, Bulters D, Brown M, Critchley G, Spurling G, Gaylard J, Javadpour M, Eldridge P, Murray L, Nelson R, Taylor R, Hierons S, Mendelow AD, Tobin B, Storey K, Walsh D, Mistry B, Aeron-Thomas J, Puppo C, Papadopoulos M, Montague L, Gan P, Flint G, Hurley J, Ronne E, Stjernling I, Wang E, Leen Cheng E, Lai JL, Ross S, Bellfield R, Mandizvidza L, Whitfield P, Persad N, Suttner N, Teo M, McGuigan K, Cloughley L, Patel H, Ingham A, Shaw K, Vindlacheruvu R, Millo J, Warner O, Teal R, Bernard F, Sirois C, Joshi S, Nyabadza S, Grieve J, Kitchen N, Bassan V, Rayson P, Zeitlin A, Findlay M, Sonnema L, Poworoznik B, Quintero J, Eljamel S, Teo M, Rasulo F, Ng I, Lai JL, Mathew B, Grieg J, Hanel R, Richie A, Fleetwood I, Reardon-White E, Hampton G, Lewis S, Miralia L, Brydon H, Maguire H, Patel U, Sanderson H, Birchall K, Bayliss P, O'Neill K, Sachs T, Kett-White R, Quinn L (2017) What factors determine treatment outcome in aneurysmal subarachnoid hemorrhage in the modern era? A post hoc STASH analysis. World Neurosurg 105:270–281CrossRefPubMedGoogle Scholar
  9. 9.
    Taufique Z, May T, Meyers E, Falo C, Mayer SA, Agarwal S, Park S, Connolly ES, Claassen J, Schmidt JM (2016) Predictors of poor quality of life 1 year after subarachnoid hemorrhage. Neurosurgery. 78(2):256–264CrossRefPubMedGoogle Scholar
  10. 10.
    Cinotti R, Putegnat J-B, Lakhal K, Desal H, Chenet A, Buffenoir K, Frasca D, Allaouchiche B, Asehnoune K, Rozec B (2019) Evolution of neurological recovery during the first year after subarachnoid haemorrhage in a French university centre. Anaesth Crit Care Pain Med 38(3):251–257CrossRefPubMedGoogle Scholar
  11. 11.
    Zheng VZ, Wong GKC (2017) Neuroinflammation responses after subarachnoid hemorrhage: a review. J Clin Neurosci 42:7–11CrossRefPubMedGoogle Scholar
  12. 12.
    Brathwaite S (2016) The role of Toll-like receptor 4 in the pathogenesis of experimental subarachnoid hemorrhage (Doctoral dissertation)Google Scholar
  13. 13.
    Okada T, Suzuki H (2017) Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage. Neural Regen Res 12(2):193–196CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chaudhry SR, Hafez A, Rezai Jahromi B, Kinfe TM, Lamprecht A, Niemela M (2018) Role of damage associated molecular pattern molecules (DAMPs) in aneurysmal subarachnoid hemorrhage (aSAH). Int J Mol Sci 19(7)Google Scholar
  15. 15.
    Galea J, Ogungbenro K, Hulme S, Patel H, Scarth S, Hoadley M, Illingworth K, McMahon CJ, Tzerakis N, King AT, Vail A, Hopkins SJ, Rothwell N, Tyrrell P (2018) Reduction of inflammation after administration of interleukin-1 receptor antagonist following aneurysmal subarachnoid hemorrhage: results of the Subcutaneous Interleukin-1Ra in SAH (SCIL-SAH) study. J Neurosurg 128(2):515–523CrossRefPubMedGoogle Scholar
  16. 16.
    Wellman GC, Koide M (2013) Impact of subarachnoid hemorrhage on parenchymal arteriolar function. Cerebral Vasospasm: Neurovascular Events After Subarachnoid Hemorrhage. Springer, pp 173–177Google Scholar
  17. 17.
    Carrera E, Kurtz P, Badjatia N, Fernandez L, Claassen J, Lee K, Schmidt JM, Connolly ES, Marshall RS, Mayer SA (2010) Cerebrovascular carbon dioxide reactivity and delayed cerebral ischemia after subarachnoid hemorrhage. Arch Neurol 67(4):434–439CrossRefPubMedGoogle Scholar
  18. 18.
    Jarus-Dziedzic K, Glowacki M, Warzecha A, Jurkiewicz J, Czernicki Z, Fersten E (2011) Cerebrovascular reactivity evaluated by transcranial doppler sonography in patients after aneurysmal subarachnoid haemorrhage treated with microsurgical clipping or endovascular coiling technique. Neurol Res 33(1):18–23CrossRefPubMedGoogle Scholar
  19. 19.
    Suzuki S, Suzuki M, Iwabuchi T, Kamata Y (1983) Role of multiple cerebral microthrombosis in symptomatic cerebral vasospasm: with a case report. Neurosurgery. 13(2):199–203CrossRefPubMedGoogle Scholar
  20. 20.
    Vergouwen MD, Vermeulen M, Coert BA, Stroes ES, Roos YB (2008) Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab 28(11):1761–1770CrossRefPubMedGoogle Scholar
  21. 21.
    Woitzik J, Dreier JP, Hecht N, Fiss I, Sandow N, Major S, Winkler M, Dahlem YA, Manville J, Diepers M, Muench E, Kasuya H, Schmiedek P, Vajkoczy P (2012) Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 32(2):203–212CrossRefGoogle Scholar
  22. 22.
    Petzold GC, Einhaupl KM, Dirnagl U, Dreier JP (2003) Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space. Ann Neurol 54(5):591–598CrossRefPubMedGoogle Scholar
  23. 23.
    Starke RM, Kim GH, Komotar RJ, Hickman ZL, Black EM, Rosales MB, Kellner CP, Hahn DK, Otten ML, Edwards J, Wang T, Russo JJ, Mayer SA, Connolly ES Jr (2008) Endothelial nitric oxide synthase gene single-nucleotide polymorphism predicts cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 28(6):1204–1211CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pluta R (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105(1):23–56CrossRefGoogle Scholar
  25. 25.
    Budohoski KP, Czosnyka M, Kirkpatrick PJ, Smielewski P, Steiner LA, Pickard JD (2013) Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol 9(3):152–163CrossRefPubMedGoogle Scholar
  26. 26.
    Ursino M (1994) Regulation of the circulation of the brain. The Human Brain Circulation. Humana Press, TotowaGoogle Scholar
  27. 27.
    Nonaka T, Watanabe S, Chigasaki H, Miyaoka M, Ishii S (1979) Etiology and treatment of vasospasm following subarachnoid haemorrhage. Neurol Med Chir 19(1):53–60CrossRefGoogle Scholar
  28. 28.
    Weir B, Grace M, Hansen J, Rothberg C (1978) Time course of vasospasm in man. J Neurosurg 48(2):173–178CrossRefGoogle Scholar
  29. 29.
    Geraghty JR, Testai FD (2017) Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep 19(12):50CrossRefPubMedGoogle Scholar
  30. 30.
    Pluta RM, Afshar JKB, Boock RJ, Oldfield EH (1998) Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage. J Neurosurg 88(3):557–561CrossRefPubMedGoogle Scholar
  31. 31.
    Crowley RW, Medel R, Kassell NF, Dumont AS (2008) New insights into the causes and therapy of cerebral vasospasm following subarachnoid hemorrhage. Drug Discov Today 13(5–6):254–260CrossRefPubMedGoogle Scholar
  32. 32.
    German JW, Gross CE, Giclas P, Watral W, Bednar MM (1996) Systemic complement depletion inhibits experimental cerebral vasospasm. Neurosurgery. 39(1):141–146CrossRefPubMedGoogle Scholar
  33. 33.
    Khurana VG, Sohni YR, Mangrum WI, McClelland RL, O'Kane DJ, Meyer FB et al (2004) Endothelial nitric oxide synthase gene polymorphisms predict susceptibility to aneurysmal subarachnoid hemorrhage and cerebral vasospasm. J Cereb Blood Flow Metab 24(3):291–297CrossRefPubMedGoogle Scholar
  34. 34.
    Lan C, Das D, Wloskowicz A, Vollrath B (2004) Endothelin-1 modulates hemoglobin-mediated signaling in cerebrovascular smooth muscle via RhoA/Rho kinase and protein kinase C. Am J Phys Heart Circ Phys 286(1):H165–HH73Google Scholar
  35. 35.
    Macdonald RL, Pluta RM, Zhang JH (2007) Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Rev Neurol 3(5):256CrossRefGoogle Scholar
  36. 36.
    Murthy SB, Caplan J, Levy AP, Pradilla G, Moradiya Y, Schneider EB, Shalom H, Ziai WC, Tamargo RJ, Nyquist PA (2016) Haptoglobin 2-2 genotype is associated with cerebral salt wasting syndrome in aneurysmal subarachnoid hemorrhage. Neurosurgery. 78(1):71–76CrossRefPubMedGoogle Scholar
  37. 37.
    Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10(1):44–58CrossRefPubMedGoogle Scholar
  38. 38.
    Soppi V, Karamanakos PN, Koivisto T, Kurki MI, Vanninen R, Jaaskelainen JE, Rinne J (2012) A randomized outcome study of enteral versus intravenous nimodipine in 171 patients after acute aneurysmal subarachnoid hemorrhage. World Neurosurg 78(1–2):101–109Google Scholar
  39. 39.
    Macdonald RL (2012) Nimodipine--oral or intravenous? No--subarachnoid. World Neurosurg 78(1–2):50Google Scholar
  40. 40.
    Dorhout Mees SRG, Feigin VL, Algra A, van den Bergh WM, Vermeulen M, van Gijn J (2007) Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 3:52Google Scholar
  41. 41.
    Hanggi D, Etminan N, Aldrich F, Steiger HJ, Mayer SA, Diringer MN et al (2017) Randomized, open-label, phase 1/2a study to determine the maximum tolerated dose of intraventricular sustained release nimodipine for subarachnoid hemorrhage (NEWTON [Nimodipine Microparticles to Enhance Recovery While Reducing Toxicity After Subarachnoid Hemorrhage]). Stroke. 48(1):145–151CrossRefPubMedGoogle Scholar
  42. 42.
    Dorhout Mees SM, van den Bergh WM, Algra A, Rinkel GJE (2007) Antiplatelet therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 4:33Google Scholar
  43. 43.
    Baharoglu MIGM, Rinkel GJE, Algra A, Vermeulen M, van Gijn J, Roos YBWEM (2013) Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 8:53Google Scholar
  44. 44.
    Feigin VLAN, Rinkel GJE, Algra A, van Gijn J, Bennett DA (2005) Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst Rev 3:35Google Scholar
  45. 45.
    Pradilla G, Chaichana KL, Hoang S, Huang J, Tamargo RJ (2010) Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am 21(2):365–36+CrossRefPubMedGoogle Scholar
  46. 46.
    Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, et al. (2013) Randomised trial of clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid hemorrhage undergoing surgical clipping (CONSCIOUS-2). In: Zuccarello M, Clark JF, PyneGeithman G, Andaluz N, Hartings JA, Adeoye OM, editors. Cerebral vasospasm: neurovascular events after subarachnoid hemorrhage. Acta Neurochirurgica Supplementum. 115. Vienna: Springer-Verlag Wien; p. 27–31Google Scholar
  47. 47.
    Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, Nowbakht P, Roux S, Kassell N (2012) Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke. 43(6):1463–1469CrossRefPubMedGoogle Scholar
  48. 48.
    Rinkel GJEFV, Algra A, van Gijn J (2004) Circulatory volume expansion therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 4:20Google Scholar
  49. 49.
    Allen GS, Ahn HS, Preziosi TJ, Battye R, Boone SC, Chou SN, Kelly DL, Weir BK, Crabbe RA, Lavik PJ, Rosenbloom SB, Dorsey FC, Ingram CR, Mellits DE, Bertsch LA, Boisvert DPJ, Hundley MB, Johnson RK, Strom JA, Transou CR (1983) Cerebral arterial spasm–a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med 308(11):619–624CrossRefGoogle Scholar
  50. 50.
    Pickard JD, Murray GD, Illingworth R, Shaw MD, Teasdale GM, Foy PM, Humphrey PR, Lang DA, Nelson R, Richards P (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ. 298(6674):636–642CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Etminan N, Macdonald RL, Davis C, Burton K, Steiger HJ, Hanggi D (2015) Intrathecal application of the nimodipine slow-release microparticle system eg-1962 for prevention of delayed cerebral ischemia and improvement of outcome after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl 120:281–286Google Scholar
  52. 52.
    Hanggi D, Etminan N, Macdonald RL, Steiger HJ, Mayer SA, Aldrich F et al (2015) NEWTON: nimodipine microparticles to enhance recovery while reducing toxicity after subarachnoid hemorrhage. Neurocrit Care 23(2):274–284CrossRefGoogle Scholar
  53. 53.
    Hanggi D, Etminan N, Mayer SA, Aldrich EF, Diringer MN, Schmutzhard E et al (2019) Clinical trial protocol: phase 3, multicenter, randomized, double-blind, placebo-controlled, parallel-group, efficacy, and safety study comparing EG-1962 to standard of care oral nimodipine in adults with aneurysmal subarachnoid hemorrhage [NEWTON-2 (Nimodipine Microparticles to Enhance Recovery While Reducing Toxicity After SubarachNoid Hemorrhage)]. Neurocrit Care 30(1):88–97CrossRefPubMedGoogle Scholar
  54. 54.
    Tallarico RT, Pizzi MA, Freeman WD (2018) Investigational drugs for vasospasm after subarachnoid hemorrhage. Expert Opin Investig Drugs 27(4):313–324CrossRefPubMedGoogle Scholar
  55. 55.
    Pauls MM, Moynihan B, Barrick TR, Kruuse C, Madigan JB, Hainsworth AH et al (2018) The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: a systematic review. J Cereb Blood Flow Metab 38(2):189–203CrossRefPubMedGoogle Scholar
  56. 56.
    Wu Q, Qi L, Li H, Mao L, Yang M, Xie R, Yang X, Wang J, Zhang Z, Kong J, Sun B (2017) Roflumilast reduces cerebral inflammation in a rat model of experimental subarachnoid hemorrhage. Inflammation. 40(4):1245–1253CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Singh N, Hopkins SJ, Hulme S, Galea JP, Hoadley M, Vail A, Hutchinson PJ, Grainger S, Rothwell NJ, King AT, Tyrrell PJ (2014) The effect of intravenous interleukin-1 receptor antagonist on inflammatory mediators in cerebrospinal fluid after subarachnoid haemorrhage: a phase II randomised controlled trial. J Neuroinflammation 11:1CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, Frey A, Roux S, Pasqualin A (2008) Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 39(11):3015–3021CrossRefPubMedGoogle Scholar
  59. 59.
    Azarov I, He X, Jeffers A, Basu S, Ucer B, Hantgan RR, Levy A, Kim-Shapiro DB (2008) Rate of nitric oxide scavenging by hemoglobin bound to haptoglobin. Nitric Oxide Biol Chem 18(4):296–302CrossRefGoogle Scholar
  60. 60.
    Levy AP, Asleh R, Blum S, Levy NS, Miller-Lotan R, Kalet-Litman S, Anbinder Y, Lache O, Nakhoul FM, Asaf R, Farbstein D, Pollak M, Soloveichik YZ, Strauss M, Alshiek J, Livshits A, Schwartz A, Awad H, Jad K, Goldenstein H (2010) Haptoglobin: basic and clinical aspects. Antioxid Redox Signal 12(2):293–304CrossRefPubMedGoogle Scholar
  61. 61.
    Polticelli F, Bocedi A, Minervini G, Ascenzi P (2008) Human haptoglobin structure and function - a molecular modelling study. FEBS J 275(22):5648–5656CrossRefPubMedGoogle Scholar
  62. 62.
    Macdonald RL (2014) Haptoglobin genotype. J Neurosurg 120(2):382–384CrossRefPubMedGoogle Scholar
  63. 63.
    Wobeto VPA, Zaccariotto TR, Sonati MF (2008) Polymorphism of human haptoglobin and its clinical importance. Genet Mol Biol 31:602–620CrossRefGoogle Scholar
  64. 64.
    Cheng TM, Pan JP, Lai ST, Kao LP, Lin HH, Mao SJ (2007) Immunochemical property of human haptoglobin phenotypes: determination of plasma haptoglobin using type-matched standards. Clin Biochem 40(13–14):1045–1056CrossRefPubMedGoogle Scholar
  65. 65.
    Yang F, Brune JL, Baldwin WD, Barnett DR, Bowman BH (1983) Identification and characterization of human haptoglobin cDNA. Proc Natl Acad Sci U S A 80(19):5875–5879CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW (2014) Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol 5:13CrossRefGoogle Scholar
  67. 67.
    Asleh R, Marsh S, Shilkrut M, Binah O, Guetta J, Lejbkowicz F, Enav B, Shehadeh N, Kanter Y, Lache O, Cohen O, Levy NS, Levy AP (2003) Genetically determined heterogeneity in hemoglobin scavenging and susceptibility to diabetic cardiovascular disease. Circ Res 92(11):1193–1200CrossRefPubMedGoogle Scholar
  68. 68.
    Buehler PW, Abraham B, Vallelian F, Linnemayr C, Pereira CP, Cipollo JF, Jia Y, Mikolajczyk M, Boretti FS, Schoedon G, Alayash AI, Schaer DJ (2009) Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood. 113(11):2578–2586CrossRefPubMedGoogle Scholar
  69. 69.
    Levy AP, Larson MG, Corey D, Lotan R, Vita JA, Benjamin EJ (2004) Haptoglobin phenotype and prevalent coronary heart disease in the Framingham offspring cohort. Atherosclerosis. 172(2):361–365CrossRefPubMedGoogle Scholar
  70. 70.
    Levy AP, Roguin A, Hochberg I, Herer P, Marsh S, Nakhoul FM, Skorecki K (2000) Haptoglobin phenotype and vascular complications in patients with diabetes. N Engl J Med 343(13):969–970CrossRefPubMedGoogle Scholar
  71. 71.
    Banerjee S, Jia Y, Siburt CJ, Abraham B, Wood F, Bonaventura C et al (2012) Haptoglobin alters oxygenation and oxidation of hemoglobin and decreases propagation of peroxide-induced oxidative reactions. Free Radic Biol Med 53(6):1317–1326CrossRefPubMedGoogle Scholar
  72. 72.
    Boretti FS, Buehler PW, D'Agnillo F, Kluge K, Glaus T, Butt OI et al (2009) Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J Clin Invest 119(8):2271–2280PubMedPubMedCentralGoogle Scholar
  73. 73.
    Bulters D, Gaastra B, Zolnourian A, Alexander S, Ren D, Blackburn SL, Borsody M, Doré S, Galea J, Iihara K, Nyquist P, Galea I (2018) Haemoglobin scavenging in intracranial bleeding: biology and clinical implications. Nat Rev Neurol 14(7):416–432CrossRefPubMedGoogle Scholar
  74. 74.
    Clinical Variants of HPX [Database]. [updated 12/08/2011. Available from: http://www.ncbi.nlm.nih.gov/clinvar/?term=HPX[gene]
  75. 75.
    Allmendinger AM, Tang ER, Lui YW, Spektor V (2012) Imaging of stroke: part 1, perfusion CT-overview of imaging technique, interpretation pearls, and common pitfalls. Am J Roentgenol 198(1):52–62CrossRefGoogle Scholar
  76. 76.
    Tolosano E, Altruda F (2002) Hemopexin: structure, function, and regulation. DNA Cell Biol 21(4):297–306CrossRefPubMedGoogle Scholar
  77. 77.
    Tolosano E, Fagoonee S, Morello N, Vinchi F, Fiorito V (2010) Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal 12(2):305–320CrossRefPubMedGoogle Scholar
  78. 78.
    Altruda F, Poli V, Restagno G, Silengo L (1988) Structure of the human hemopexin gene and evidence for intron-mediated evolution. J Mol Evol 27(2):102–108CrossRefPubMedGoogle Scholar
  79. 79.
    Hahl P, Davis T, Washburn C, Rogers JT, Smith A (2013) Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. J Neurochem 125(1):89–101CrossRefPubMedGoogle Scholar
  80. 80.
    Raynes JG, Eagling S, McAdam KP (1991) Acute-phase protein synthesis in human hepatoma cells: differential regulation of serum amyloid A (SAA) and haptoglobin by interleukin-1 and interleukin-6. Clin Exp Immunol 83(3):488–491CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Theilgaard-Monch K, Jacobsen LC, Nielsen MJ, Rasmussen T, Udby L, Gharib M et al (2006) Haptoglobin is synthesized during granulocyte differentiation, stored in specific granules, and released by neutrophils in response to activation. Blood. 108(1):353–361CrossRefPubMedGoogle Scholar
  82. 82.
    Smith A, McCulloh RJ (2015) Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol 6:187CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chang KH, Tseng MY, Ro LS, Lyu RK, Tai YH, Chang HS, Wu YR, Huang CC, Hsu WC, Kuo HC, Chu CC, Chen CM (2013) Analyses of haptoglobin level in the cerebrospinal fluid and serum of patients with neuromyelitis optica and multiple sclerosis. Clin Chim Acta 417:26–30CrossRefPubMedGoogle Scholar
  84. 84.
    Carter K, Worwood M (2007) Haptoglobin: a review of the major allele frequencies worldwide and their association with diseases. Int J Lab Hematol 29(2):92–110CrossRefPubMedGoogle Scholar
  85. 85.
    Morello N, Tonoli E, Logrand F, Fiorito V, Fagoonee S, Turco E, Silengo L, Vercelli A, Altruda F, Tolosano E (2009) Haemopexin affects iron distribution and ferritin expression in mouse brain. J Cell Mol Med 13(10):4192–4204CrossRefPubMedGoogle Scholar
  86. 86.
    Morris C, Candy J, Edwardson J, Bloxham C, Smith A (1993) Evidence for the localization of haemopexin immunoreactivity in neurones in the human brain. Neurosci Lett 149(2):141–144CrossRefPubMedGoogle Scholar
  87. 87.
    Elin RJ, Foidart M, Adornato BT, Engel WK, Gralnick HR (1982) Quantification of acute phase reactants after muscle biopsy. J Lab Clin Med 100(4):566–573PubMedGoogle Scholar
  88. 88.
    Thompson EJ (2005) Proteins of the cerebrospinal fluid: analysis & interpretation in the diagnosis and treatment of neurological disease. ElsevierGoogle Scholar
  89. 89.
    Garland P, Durnford AJ, Okemefuna AI, Dunbar J, Nicoll JA, Galea J et al (2016) Heme-hemopexin scavenging is active in the brain and associates with outcome after subarachnoid hemorrhage. Stroke 47(3):872–876CrossRefPubMedGoogle Scholar
  90. 90.
    Ryffel B, Car BD, Woerly G, Weber M, Dipadova F, Kammuller M et al (1994) Long-term interleukin-6 administration stimulates sustained thrombopoiesis and acute-phase protein-synthesis in a small primate - the marmoset. Blood 83(8):2093–2102PubMedGoogle Scholar
  91. 91.
    Houssiau FA, Devogelaer JP, Damme JV, Deuxchaisnes CND, Snick JV (1988) Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum 31(6):784–788CrossRefPubMedGoogle Scholar
  92. 92.
    Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefPubMedGoogle Scholar
  93. 93.
    Zhao X, Song S, Sun G, Strong R, Zhang J, Grotta JC, Aronowski J (2009) Neuroprotective role of haptoglobin after intracerebral hemorrhage. J Neurosci 29(50):15819–15827CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhao X, Aronowski J (2013) Nrf2 to pre-condition the brain against injury caused by products of hemolysis after ICH. Transl Stroke Res 4(1):71–75CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Liu Y, Qiu J, Wang Z, You W, Wu L, Ji C, Chen G (2015) Dimethylfumarate alleviates early brain injury and secondary cognitive deficits after experimental subarachnoid hemorrhage via activation of Keap1-Nrf2-ARE system. J Neurosurg 123(4):915–923CrossRefPubMedGoogle Scholar
  96. 96.
    Froehler MT, Kooshkabadi A, Miller-Lotan R, Blum S, Sher S, Levy A, Tamargo RJ (2010) Vasospasm after subarachnoid hemorrhage in haptoglobin 2-2 mice can be prevented with a glutathione peroxidase mimetic. J Clin Neurosci 17(9):1169–1172CrossRefPubMedGoogle Scholar
  97. 97.
    Nagy E, Eaton JW, Jeney V, Soares MP, Varga Z, Galajda Z et al (2010) Red cells, hemoglobin, heme, iron, and atherogenesis. Arterioscler Thromb Vasc Biol 30(7):1347–1353CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Doherty DH, Doyle MP, Curry SR, Vali RJ, Fattor TJ, Olson JS, Lemon DD (1998) Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol 16(7):672–676CrossRefPubMedGoogle Scholar
  99. 99.
    Olson JS, Foley EW, Rogge C, Tsai A-L, Doyle MP, Lemon DD (2004) NO scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med 36(6):685–697CrossRefPubMedGoogle Scholar
  100. 100.
    Baek JH, D’Agnillo F, Vallelian F, Pereira CP, Williams MC, Jia Y, Schaer DJ, Buehler PW (2012) Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy. J Clin Invest 122(4):1444–1458CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Doyle MP, Pickering RA, Dykstra RL, Nelson CL, Boyer RF (1982) Involvement of peroxide and superoxide in the oxidation of hemoglobin by nitrite. Biochem Biophys Res Commun 105(1):127–132CrossRefPubMedGoogle Scholar
  102. 102.
    Gutteridge JM (1986) Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett 201(2):291–295CrossRefGoogle Scholar
  103. 103.
    Joerk A, Seidel RA, Walter SG, Wiegand A, Kahnes M, Klopfleisch M, Kirmse K, Pohnert G, Westerhausen M, Witte OW, Holthoff K (2014) Impact of heme and heme degradation products on vascular diameter in mouse visual cortex. J Am Heart Assoc 3(4):p.e001220Google Scholar
  104. 104.
    Vallelian F, Pimenova T, Pereira CP, Abraham B, Mikolajczyk MG, Schoedon G, Zenobi R, Alayash AI, Buehler PW, Schaer DJ (2008) The reaction of hydrogen peroxide with hemoglobin induces extensive α-globin crosslinking and impairs the interaction of hemoglobin with endogenous scavenger pathways. Free Radic Biol Med 45(8):1150–1158CrossRefPubMedGoogle Scholar
  105. 105.
    Just A, Whitten CL, Arendshorst WJ (2008) Reactive oxygen species participate in acute renal vasoconstrictor responses induced by ET A and ET B receptors. Am J Physiol Ren Physiol 294(4):F719–FF28CrossRefGoogle Scholar
  106. 106.
    Knock GA, Snetkov VA, Shaifta Y, Connolly M, Drndarski S, Noah A, Pourmahram GE, Becker S, Aaronson PI, Ward JPT (2009) Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca 2+ sensitization. Free Radic Biol Med 46(5):633–642CrossRefPubMedGoogle Scholar
  107. 107.
    Schaer C, Deuel J, Bittermann A, Rubio I, Schoedon G, Spahn D et al (2013) Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage. Cell Death Differ 20(11):1569–1579CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Gutteridge J (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41(12):1819–1828Google Scholar
  109. 109.
    Kamezaki T, Yanaka K, Nagase S, Fujita K, Kato N, Nose T (2002) Increased levels of lipid peroxides as predictive of symptomatic vasospasm and poor outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 97(6):1302–1305CrossRefGoogle Scholar
  110. 110.
    Friedrich V, Flores R, Muller A, Sehba FA (2010) Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience. 165(3):968–975CrossRefPubMedGoogle Scholar
  111. 111.
    Stein SC, Browne KD, Chen X-H, Smith DH, Graham DI (2006) Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery. 59(4):781–788CrossRefPubMedGoogle Scholar
  112. 112.
    Asleh R, Levy AP (2005) In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease. Vasc Health Risk Manag 1(1):19–28CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Andersen CBF, Torvund-Jensen M, Nielsen MJ, de Oliveira CLP, Hersleth H-P, Andersen NH, Pedersen JS, Andersen GR, Moestrup SK (2012) Structure of the haptoglobin-haemoglobin complex. Nature. 489(7416):456–459CrossRefPubMedGoogle Scholar
  114. 114.
    Buehler PW, Abraham B, Vallelian F, Linnemayr C, Pereira CP, Cipollo JF, Jia Y, Mikolajczyk M, Boretti FS, Schoedon G, Alayash AI, Schaer DJ (2009) Haptoglobin preserves the CD163 hemoglobin scavenger pathway by shielding hemoglobin from peroxidative modification. Blood. 113(11):2578–2586CrossRefPubMedGoogle Scholar
  115. 115.
    Boretti FS, Buehler PW, D’agnillo F, Kluge K, Glaus T, Butt OI et al (2009) Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and guinea pigs. J Clin Invest 119(8):2271PubMedPubMedCentralGoogle Scholar
  116. 116.
    Levy NS, Levy AP (2011) Changing the face of diabetic care with haptoglobin genotype selection and vitamin E. Rambam Maimonides Med J 2(2):e0047CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK (2013) The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxidative Med Cell Longev 2013:523652CrossRefGoogle Scholar
  118. 118.
    Galea J, Cruickshank G, Teeling JL, Boche D, Garland P, Perry VH, Galea I (2012) The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage. J Neurochem 121(5):785–792CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Fabriek BO, Van Haastert ES, Galea I, Polfliet MM, Döpp ED, Van Den Heuvel MM et al (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia. 51(4):297–305CrossRefPubMedGoogle Scholar
  120. 120.
    Guetta J, Strauss M, Levy NS, Fahoum L, Levy AP (2007) Haptoglobin genotype modulates the balance of Th1/Th2 cytokines produced by macrophages exposed to free hemoglobin. Atherosclerosis. 191(1):48–53CrossRefPubMedGoogle Scholar
  121. 121.
    Satopaa J, Niemela M (2015) Blood and the brain. World Neurosurg 84(2):228–230CrossRefPubMedGoogle Scholar
  122. 122.
    Hvidberg V, Maniecki MB, Jacobsen C, Højrup P, Møller HJ, Moestrup SK (2005) Identification of the receptor scavenging hemopexin-heme complexes. Blood. 106(7):2572–2579CrossRefPubMedGoogle Scholar
  123. 123.
    Lee WC, Hwang KP, King YT, Chen HC, Chiou SS, Yang RC, Huang TY (2000) Late diagnosis of Kawasaki disease is associated with haptoglobin phenotype. Eur J Clin Investig 30(5):379–382CrossRefGoogle Scholar
  124. 124.
    Delanghe J, Cambier B, Langlois M, DeBuyzere M, Neels H, DeBacquer D et al (1997) Haptoglobin polymorphism, a genetic risk factor in coronary artery bypass surgery. Atherosclerosis. 132(2):215–219CrossRefPubMedGoogle Scholar
  125. 125.
    Wiernicki I, Gutowski P, Ciechanowski K, Millo B, Wieczorek P, Cnotliwy M, Michalak T, Hamera T, Piatek J (2001) Abdominal aortic aneurysm: association between haptoglobin phenotypes, elastase activity, and neutrophil count in the peripheral blood. Vasc Surg 35(5):345–351CrossRefPubMedGoogle Scholar
  126. 126.
    Lee MY, Kim SY, Choi JS, Lee IH, Choi YS, Jin JY, Park SJ, Sung KW, Chun MH, Kim IS (2002) Upregulation of haptoglobin in reactive astrocytes after transient forebrain ischemia in rats. J Cereb Blood Flow Metab 22(10):1176–1180CrossRefPubMedGoogle Scholar
  127. 127.
    Chang KH, Lyu RK, Tseng MY, Ro LS, Wu YR, Chang HS, Hsu WC, Kuo HC, Huang CC, Chu CC, Hsieh SY, Chen CM (2007) Elevated haptoglobin level of cerebrospinal fluid in Guillain-Barre syndrome revealed by proteomics analysis. Proteomics Clin Appl 1(5):467–475CrossRefPubMedGoogle Scholar
  128. 128.
    Chamoun V, Zeman A, Blennow K, Fredman P, Wallin A, Keir G, Giovannoni G, Thompson EJ (2001) Haptoglobins as markers of blood–CSF barrier dysfunction: the findings in normal CSF. J Neurol Sci 182(2):117–121CrossRefPubMedGoogle Scholar
  129. 129.
    Leclerc JL, Lampert AS, Loyola Amador C, Schlakman B, Vasilopoulos T, Svendsen P, Moestrup SK, Doré S (2018) The absence of the CD163 receptor has distinct temporal influences on intracerebral hemorrhage outcomes. J Cereb Blood Flow Metab 38(2):262–273CrossRefPubMedGoogle Scholar
  130. 130.
    Durnford A, Dunbar J, Galea J, Bulters D, Nicoll JAR, Boche D et al (2015) Haemoglobin scavenging after subarachnoid haemorrhage. Acta Neurochir Suppl 120:51–54PubMedGoogle Scholar
  131. 131.
    Graca-Souza AV, Arruda MA, de Freitas MS, Barja-Fidalgo C, Oliveira PL (2002) Neutrophil activation by heme: implications for inflammatory processes. Blood. 99(11):4160–4165CrossRefPubMedGoogle Scholar
  132. 132.
    Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, Smith A, Nath KA, Hebbel RP, Vercellotti GM (2014) Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 123(3):377–390CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Gaastra B, Ren D, Alexander S, Bennett ER, Bielawski DM, Blackburn SL et al (2019) Haptoglobin genotype and aneurysmal subarachnoid hemorrhage: individual patient data analysis. Neurology. 92(18):e2150–e2e64PubMedGoogle Scholar
  134. 134.
    Chaichana KL, Levy AP, Miller-Lotan R, Shakur S, Tamargo RJ (2007) Haptoglobin 2-2 genotype determines chronic vasospasm after experimental subarachnoid hemorrhage. Stroke. 38(12):3266–3271CrossRefPubMedGoogle Scholar
  135. 135.
    Borsody M, Burke A, Coplin W, Miller-Lotan R, Levy A (2006) Haptoglobin and the development of cerebral artery vasospasm after subarachnoid hemorrhage. Neurology. 66(5):634–640CrossRefPubMedGoogle Scholar
  136. 136.
    Ohnishi H, Iihara K, Kaku Y, Yamauchi K, Fukuda K, Nishimura K, Nakai M, Satow T, Nakajima N, Ikegawa M (2013) Haptoglobin phenotype predicts cerebral vasospasm and clinical deterioration after aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 22(4):520–526CrossRefPubMedGoogle Scholar
  137. 137.
    Kantor E, Bayir H, Ren D, Provencio JJ, Watkins L, Crago E et al (2014) Haptoglobin genotype and functional outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 120(2):386–390CrossRefGoogle Scholar
  138. 138.
    Leclerc JL, Blackburn S, Neal D, Mendez NV, Wharton JA, Waters MF, Doré S (2015) Haptoglobin phenotype predicts the development of focal and global cerebral vasospasm and may influence outcomes after aneurysmal subarachnoid hemorrhage. Proc Natl Acad Sci U S A 112(4):1155–1160CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Lai PMR, Du R (2015) Role of genetic polymorphisms in predicting delayed cerebral ischemia and radiographic vasospasm after aneurysmal subarachnoid hemorrhage: a meta-analysis. World Neurosurg 84(4):933–41. e2CrossRefGoogle Scholar
  140. 140.
    Gaastra B, Glazier J, Bulters D, Galea I (2017) Haptoglobin genotype and outcome after subarachnoid haemorrhage: new insights from a meta-analysis. Oxidative Med Cell Longev 2017:9CrossRefGoogle Scholar
  141. 141.
    Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123(3):1299–1309CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L et al (2017) Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. Pathophysiology. 24(3):169–183CrossRefPubMedGoogle Scholar
  143. 143.
    Przybycien-Szymanska MM, Yang Y, Ashley WW (2016) Microparticle derived proteins as potential biomarkers for cerebral vasospasm post subarachnoid hemorrhage. A preliminary study. Clin Neurol Neurosurg 141:48–55CrossRefPubMedGoogle Scholar
  144. 144.
    Suzuki H, Muramatsu M, Kojima T, Taki W (2003) Intracranial heme metabolism and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 34(12):2796–2800CrossRefPubMedGoogle Scholar
  145. 145.
    Chen-Roetling J, Sheng-Kai M, Yang C, Aishwarya S, Regan RF (2018) Hemopexin increases the neurotoxicity of hemoglobin when haptoglobin is absent. J Neurochem 145(6):464–473CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Lucke-Wold BP, Logsdon AF, Manoranjan B, Turner RC, McConnell E, Vates GE, Huber J, Rosen C, Simard J (2016) Aneurysmal subarachnoid hemorrhage and neuroinflammation: a comprehensive review. Int J Mol Sci 17(4):497CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Leclerc JL, Santiago-Moreno J, Dang A, Lampert AS, Cruz PE, Rosario AM, Golde TE, Doré S (2018) Increased brain hemopexin levels improve outcomes after intracerebral hemorrhage. J Cerebr Blood F Met 38(6):1032–1046Google Scholar
  148. 148.
    Kay A, Petzold A, Kerr M, Keir G, Thompson E, Nicoll J (2003) Temporal alterations in cerebrospinal fluid amyloid beta-protein and apolipoprotein E after subarachnoid hemorrhage. Stroke. 34(12):e240–e243CrossRefPubMedGoogle Scholar
  149. 149.
    Kay A, Petzold A, Kerr M, Keir G, Thompson E, Nicoll J (2003) Decreased cerebrospinal fluid apolipoprotein E after subarachnoid hemorrhage: correlation with injury severity and clinical outcome. Stroke. 34(3):637–642CrossRefPubMedGoogle Scholar
  150. 150.
    Guo ZD, Sun XC, Zhang JH (2011) The role of apolipoprotein e in the pathological events following subarachnoid hemorrhage: a review. Acta Neurochir Suppl 110(Pt 2):5–7PubMedGoogle Scholar
  151. 151.
    Lanterna LAL, Biroli F (2009) Significance of apolipoprotein E in subarachnoid hemorrhage: neuronal injury, repair, and therapeutic perspectives–a review. J Stroke Cerebrovasc Dis 18(2):116–123CrossRefPubMedGoogle Scholar
  152. 152.
    Imaizumi H, Tsunoda K, Ichimiya N, Okamoto T, Namiki A (1994) Repeated large-dose haptoglobin therapy in an extensively burned patient: case report. J Emerg Med 12(1):33–37CrossRefPubMedGoogle Scholar
  153. 153.
    Yoshioka T, Sugimoto T, Ukai T, Oshiro T (1985) Haptoglobin therapy for possible prevention of renal failure following thermal injury: a clinical study. J Trauma 25(4):281–287CrossRefPubMedGoogle Scholar
  154. 154.
    Ohga S, Higashi E, Nomura A, Matsuzaki A, Hirono A, Miwa S, Fujii H, Ueda K (1995) Haptoglobin therapy for acute favism: a Japanese boy with glucose-6-phosphate dehydrogenase Guadalajara. Br J Haematol 89(2):421–423CrossRefPubMedGoogle Scholar
  155. 155.
    Tanaka K, Kanamori Y, Sato T, Kondo C, Katayama Y, Yada I et al (1990) Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans/Am Soc Artif Internal Organs 37(3):M482–M483Google Scholar
  156. 156.
    Hashimoto K, Nomura K, Nakano M, Sasaki T, Kurosawa H (1993) Pharmacological intervention for renal protection during cardiopulmonary bypass. Heart Vessel 8(4):203–210CrossRefGoogle Scholar
  157. 157.
    Eda K, Ohtsuka S, Seo Y, Yamada S, Ishiyama M, Miyamoto T, Horigome H, Yamaguchi I (2001) Conservative treatment of hemolytic complication following coil embolization in two adult cases of patent ductus arteriosus. Jpn Circ J 65(9):834–836CrossRefPubMedGoogle Scholar
  158. 158.
    Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM (2013) Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 121(8):1276–1284CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Shim B-S, Bearn AG (1964) The distribution of haptoglobin subtypes in various populations, including subtype patterns in some nonhuman primates. Am J Hum Genet 16(4):477PubMedPubMedCentralGoogle Scholar
  160. 160.
    Vinchi F, Da Silva MC, Ingoglia G, Petrillo S, Brinkman N, Zuercher A et al (2016) Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood. 127(4):473–486CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Graw JA, Mayeur C, Rosales I, Liu Y, Sabbisetti VS, Riley FE, Rechester O, Malhotra R, Warren HS, Colvin RB, Bonventre JV, Bloch DB, Zapol WM (2016) Haptoglobin or hemopexin therapy prevents acute adverse effects of resuscitation after prolonged storage of red cellsclinical perspective. Circulation. 134(13):945–960CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Goss N (2012) Production of plasma proteins for therapeutic use. John Wiley & SonsGoogle Scholar
  163. 163.
    Smith A, McCulloh R (2017) Mechanisms of haem toxicity in haemolysis and protection by the haem-binding protein, haemopexin. ISBT Sci Ser 12(1):119–133CrossRefGoogle Scholar
  164. 164.
    Jiménez-Roldán L, Alén JF, Gómez PA, Lobato RD, Ramos A, Munarriz PM, Lagares A (2013) Volumetric analysis of subarachnoid hemorrhage: assessment of the reliability of two computerized methods and their comparison with other radiographic scales. J Neurosurg 118(1):84–93CrossRefPubMedGoogle Scholar
  165. 165.
    Jung S-W, Lee C-Y, Yim M-B (2012) The relationship between subarachnoid hemorrhage volume and development of cerebral vasospasm. J Cerebrovasc Endovasc Neurosurg 14(3):186–191CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Fang Y, Shao Y, Lu J et al (2019) The effectiveness of lumbar cerebrospinal fluid drainage in aneurysmal subarachnoid hemorrhage with different bleeding amounts. Neurosurg Rev.  https://doi.org/10.1007/s10143-019-01116-1

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryRoyal Melbourne HospitalParkvilleAustralia
  2. 2.Western HospitalFootscrayAustralia
  3. 3.Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations