Advertisement

What is the best therapeutic approach to a pediatric patient with a deep-seated brain AVM?

  • Torstein R. MelingEmail author
  • Gildas Patet
Short Review
  • 19 Downloads

Abstract

Although brain arteriovenous malformations (bAVMs) account for a very small proportion of cerebral pathologies in the pediatric population, they are the cause of roughly 50% of spontaneous intracranial hemorrhages. Pediatric bAVMs tend to rupture more frequently and seem to have higher recurrence rates than bAVMs in adults. Thus, the management of pediatric bAVMs is particularly challenging. In general, the treatment options are conservative treatment, microsurgery, endovascular therapy (EVT), gamma knife radiosurgery (GKRS), proton-beam stereotactic radiosurgery (PSRS), or a combination of the above. In order to identify the best approach to deep-seated pediatric bAVMs, we performed a systematic review, according to the PRISMA guidelines. None of the options seem to offer a clear advantage over the others when used alone. Microsurgery provides the highest obliteration rate, but has higher incidence of neurological complications. EVT may play a role when used as adjuvant therapy, but as a stand-alone therapy, the efficacy is low and the long-term side effects of radiation from the multiple sessions required in deep-seated pediatric bAVMs are still unknown. GKRS has a low risk of complication, but the obliteration rates still leave much to be desired. Finally, PSRS offers promising results with a more accurate radiation that avoids the surrounding tissue, but data is limited due to its recent introduction. Overall, a multi-modal approach, or even an active surveillance, might be the most suitable when facing deep-seated bAVM, considering the difficulty of their management and the high risk of complications in the pediatric population.

Keywords

Deep-seated arteriovenous malformations Microsurgery Endovascular treatment Gamma knife radiation surgery Proton beam stereotactic radiosurgery Review 

Notes

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approved

Not applicable as no new patients were involved in this research.

Informed consent

Not applicable as no new patients were involved in this research.

References

  1. 1.
    Capitanio JF, Panni P, Gallotti AL, Gigliotti CR, Scomazzoni F, Acerno S, Del Vecchio A, Mortini P (2018) Radiosurgical treatment of arteriovenous malformations in a retrospective study group of 33 children: the importance of radiobiological scores. Childs Nerv Syst 35:301–308.  https://doi.org/10.1007/s00381-018-4008-2 CrossRefGoogle Scholar
  2. 2.
    Horgan MA, Florman J, Spetzler RF (2006) Surgical treatment of arteriovenous malformations in children. In: Alexander MJ, Spetzler RF (eds) Pediatric Neurovascular Disease: Surgical, Endovascular and Medical Management. Thieme, New YorkGoogle Scholar
  3. 3.
    El-Ghanem M, Kass-Hout T, Kass-Hout O, Alderazi YJ, Amuluru K, Al-Mufti F, Prestigiacomo CJ, Gandhi CD (2016) Arteriovenous malformations in the pediatric population: review of the existing literature. Interventional Neurology 5(3–4):218–225.  https://doi.org/10.1159/000447605 CrossRefGoogle Scholar
  4. 4.
    Smith ER, Butler WE, Ogilvy CS (2002) Surgical approaches to vascu-lar anomalies of the child’s brain. Curr Opin Neurol 15:165–171CrossRefGoogle Scholar
  5. 5.
    Ding D, Starke RM, Kano H, Mathieu D, Huang PP, Feliciano C, Sheehan JP (2017) International multicenter cohort study of pediatric brain arteriovenous malformations. Part 1: predictors of hemorrhagic presentation. J Neurosurg Pediatr 19(2):127–135.  https://doi.org/10.3171/2016.9.PEDS16283 CrossRefGoogle Scholar
  6. 6.
    Sanchez-Mejia RO, Chennupati SK, Gupta N, Fullerton H, Young WL, Lawton MT (2006) Superior outcomes in children compared with adults after microsurgical resection of brain arteriovenous malformations. J Neurosurg 105(2 Suppl):82–87Google Scholar
  7. 7.
    Thiex R, Williams A, Smith E, Scott RM, Orbach DB (2010) The use of onyx for embolization of central nervous system arteriovenous lesions in pediatric patients. AJNR Am J Neuroradiol 31(1):112–120.  https://doi.org/10.3174/ajnr.A1786 CrossRefGoogle Scholar
  8. 8.
    Cenzato M, Boccardi E, Beghi E, Vajkoczy P, Szikora I, Motti E, Regli L, Raabe A, Eliava S, Gruber A, Meling TR, Niemela M, Pasqualin A, Golanov A, Karlsson B, Kemeny A, Liscak R, Lippitz B, Radatz M, La Camera A, Chapot R, Islak C, Spelle L, Debernardi A, Agostoni E, Revay M, Morgan MK (2017) European consensus conference on unruptured brain AVMs treatment (supported by EANS, ESMINT, EGKS, and SINCH). Acta Neurochir 159(6):1059–1064.  https://doi.org/10.1007/s00701-017-3154-8 CrossRefGoogle Scholar
  9. 9.
    Gross BA, Storey A, Orbach DB, Scott RM, Smith ER (2015) Microsurgical treatment of arteriovenous malformations in pediatric patients: the Boston Children’s Hospital experience. J Neurosurg Pediatr 15(1):71–77.  https://doi.org/10.3171/2014.9.PEDS146 CrossRefGoogle Scholar
  10. 10.
    Nair AP, Kumar R, Mehrotra A, Srivastava AK, Sahu RN, Nair P (2012) Clinical, radiological profile and outcome in pediatric Spetzler–Martin grades I–III arteriovenous malformations. Childs Nerv Syst 28(4):593–598.  https://doi.org/10.1007/s00381-011-1668-6 CrossRefGoogle Scholar
  11. 11.
    Soltanolkotabi M, Schoeneman SE, Alden TD, Hurley MC, Ansari SA, DiPatri AJ Jr, Tomita T, Shaibani A (2013) Onyx embolization of intracranial arteriovenous malformations in pediatric patients. J Neurosurg Pediatr 11(4):431–437.  https://doi.org/10.3171/2013.1 CrossRefGoogle Scholar
  12. 12.
    Berenstein A, Ortiz R, Niimi Y, Elijovich L, Fifi J, Madrid M, Ghatan S, Molofsky W (2010) Endovascular management of arteriovenous malformations and other intracranial arterio-venous shunts in neonates, infants, and children. Childs Nerv Syst 26:1345–1358CrossRefGoogle Scholar
  13. 13.
    Kano H, Kondziolka D, Flickinger JC, Yang HC, Flannery TJ, Niranjan A, Novotny J Jr, Lunsford LD (2012) Stereotactic radiosurgery for arteriovenous malformations, part 4: management of basal ganglia and thalamus arteriovenous malformations. J Neurosurg 116(1):33–43CrossRefGoogle Scholar
  14. 14.
    Hanakita S, Koga T, Shin M, Igaki H, Saito N (2015) The long-term outcomes of radiosurgery for arteriovenous malformations in pediatric and adolescent populations. J Neurosurg Pediatr 16(2):222–231.  https://doi.org/10.3171/2015.1.PEDS14407 CrossRefGoogle Scholar
  15. 15.
    Yen CP, Monteith SJ, Nguyen JH, Rainey J, Schlesinger DJ, Sheehan JP (2010) Gamma knife surgery for arteriovenous malformations in children. J Neurosurg Pediatr 6:426–434CrossRefGoogle Scholar
  16. 16.
    Starke RM, Ding D, Kano H, Mathieu D, Huang PP, Feliciano C, Rodriguez-Mercado R, Almodovar L, Grills IS, Silva D, Abbassy M, Missios S, Kondziolka D, Barnett GH, Dade Lunsford L, Sheehan JP (2016) International multicenter cohort study of pediatric brain arteriovenous malformations. Part 2: outcomes after stereotactic radiosurgery. J Neurosurg Pediatr 2017 Feb 19(2):136–148.  https://doi.org/10.3171/2016.9.PEDS16284 CrossRefGoogle Scholar
  17. 17.
    Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP (2014) Radiosurgery for ruptured intracranial arteriovenous malformations. J Neurosurg 121(2):470–481.  https://doi.org/10.3171/2014.2.jns131605 CrossRefGoogle Scholar
  18. 18.
    Pan DH, Kuo YH, Guo WY, Chung WY, Wu HM, Liu KD, Chang YC, Wang LW, Wong TT (2008) Gamma knife surgery for cerebral arteriovenous malformations in children: a 13-year experience. J Neurosurg Pediatr 1(4):296–304.  https://doi.org/10.3171/ped/2008/1/4/296 CrossRefGoogle Scholar
  19. 19.
    Potts MB, Sheth SA, Louie J, Smyth MD, Sneed PK, McDermott MW, Lawton MT, Young WL, Hetts SW, Fullerton HJ, Gupta N (2014) Stereotactic radiosurgery at a low marginal dose for the treatment of pediatric arteriovenous malformations: obliteration, complications, and functional outcomes. J Neurosurg Pediatr 14(1):1–11.  https://doi.org/10.3171/2014.3.PEDS13381 CrossRefGoogle Scholar
  20. 20.
    Potts MB, Young WL, Lawton MT (2013) Deep arteriovenous malformations in the basal ganglia, thalamus, and insula. Neurosurgery 73(3):417–429.  https://doi.org/10.1227/neu.0000000000000004 CrossRefGoogle Scholar
  21. 21.
    Walcott BP, Hattangadi-Gluth JA, Stapleton CJ, Ogilvy CS, Chapman PH, Loeffler JP (2014) Proton beam stereotactic radiosurgery for pediatric cerebral arteriovenous malformations. Neurosurgery 74(4):367–373; discussion 374.  https://doi.org/10.1227/NEU.0000000000000294 CrossRefGoogle Scholar
  22. 22.
    Shtaya A, Millar J, Sparrow O (2017) Multimodality management and outcomes of brain arterio-venous malformations (AVMs) in children: personal experience and review of the literature, with specific emphasis on age at first AVM bleed. Childs Nerv Syst 33(4):573–581.  https://doi.org/10.1007/s00381-017-3383-4 CrossRefGoogle Scholar
  23. 23.
    Dorfer C, Czech T, Bavinzski G, Kitz K, Mert A, Knosp E, Gruber A (2010) Multimodality treatment of cerebral AVMs in children: a single-centre 20 years experience. Childs Nerv Syst 26:681–687.  https://doi.org/10.1007/s00381-009-1039-8 CrossRefGoogle Scholar
  24. 24.
    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1CrossRefGoogle Scholar
  25. 25.
    Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, Al-Shahi Salman R, Vicaut E, Young WL, Houdart E, Cordonnier C, Stefani MA, Hartmann A, von Kummer R, Biondi A, Berkefeld J, Klijn CJ, Harkness K, Libman R, Barreau X, Moskowitz AJ, International ARUBA Investigators (2014) Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, nonblinded, randomised trial. Lancet 383(9917):614–621.  https://doi.org/10.1016/S0140-6736(13)62302-8. Epub 2013 Nov 20
  26. 26.
    Meling TR, Proust F, Gruber A, Niemela M, Regli L, Roche P-H, Vajkoczy P (2014) On apples, oranges, and ARUBA. Acta Neurochir 156(9):1775–1779.  https://doi.org/10.1007/s00701-014-2140-7 CrossRefGoogle Scholar
  27. 27.
    Akin ED, Perkins E, Ross IB (2003) Surgical handling characteristics of an ethylene vinyl alcohol copolymer compared with N-butyl cyanoacrylate used for embolization of vessels in an arteriovenous malformation resection model in swine. J Neurosurg 98:366–370CrossRefGoogle Scholar
  28. 28.
    Blauwblomme T, Bourgeois M, Meyer P, Puget S, Di Rocco F, Boddaert N, Zerah M, Brunelle F, Rose CS, Naggara O (2014) Long-term outcome of 106 consecutive pediatric ruptured brain arteriovenous malformations after combined treatment. Stroke 45(6):1664–1671.  https://doi.org/10.1161/STROKEAHA.113.004292 CrossRefGoogle Scholar
  29. 29.
    Kleinerman RA (2006) Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 36(Suppl 2):121–125CrossRefGoogle Scholar
  30. 30.
    Zheng T, Wang QJ, Liu YQ, Cui XB, Gao YY, Lai LF, Su SX, Zhang X, Li XF, He XY, Duan CZ (2013) Clinical features and endovascular treatment of intracranial arteriovenous malformations in pediatric patients. Childs Nerv Syst 30:647–653.  https://doi.org/10.1007/s00381-013-2277-3 CrossRefGoogle Scholar
  31. 31.
    Orbach DB, Stamoulis C, Strauss KJ, Manchester J, Smith ER, Scott RM, Lin N (2014) Neurointerventions in children: radiation exposure and its import. AJNR Am J Neuroradiol 35(4):650–656.  https://doi.org/10.3174/ajnr.A3758 CrossRefGoogle Scholar
  32. 32.
    Bruno CA, Meyers PM (2013) Endovascular management of arteriovenous malformations of the brain. Interv Neurol 1:109–123CrossRefGoogle Scholar
  33. 33.
    Huang PP, Kamiryo T, Nelson PK (2001) De novo aneurysm formation after stereotactic radiosurgery of a residual arteriovenous malformation: case report. AJNR Am J Neuroradiol 22(7):1346–1348Google Scholar
  34. 34.
    Nicolato A, Longhi M, Tommasi N, Ricciardi GK, Spinelli R, Foroni RI, Zivelonghi E, Zironi S, Dall’Oglio S, Beltramello A, Meglio M (2015) Leksell gamma knife for pediatric and adolescent cerebral arteriovenous malformations: results of 100 cases followed up for at least 36 months. J Neurosurg Pediatr 16(6):736–747.  https://doi.org/10.3171/2015.4.PEDS158 CrossRefGoogle Scholar
  35. 35.
    Galván De la Cruz OO, Ballesteros-Zebadúa P, Moreno-Jiménez S, Celis MA, García-Garduño OA (2015) Stereotactic radiosurgery for pediatric patients with intracranial arteriovenous malformations: variables that may affect obliteration time and probability. Clin Neurol Neurosurg 129:62–66.  https://doi.org/10.1016/j.clineuro.2014.11.019 CrossRefGoogle Scholar
  36. 36.
    Hasegawa H, Hanakita S, Shin M, Kawashima M, Takahashi W, Ishikawa O, Koizumi S, Nakatomi H, Saito N (2018) Comparison of the long-term efficacy and safety of gamma knife radiosurgery for arteriovenous malformations in pediatric and adult patients. Neurol Med Chir (Tokyo) 58:231–239CrossRefGoogle Scholar
  37. 37.
    Buis DR, Dirven CMF, Lagerwaard FJ, Mandl ES, Lycklama A, Nijeholt GJ, Eshghi DS, Van Den Berg R, Baayen JC, Meijer OW, Slotman BJ, Vandertop WP (2008) Radiosurgery of brain arteriovenous malformations in children. J Neurol 255:551–560CrossRefGoogle Scholar
  38. 38.
    Morgenstern PF, Hoffman CE, Kocharian G, Singh R, Stieg PE, Souweidane MM (2016) Postoperative imaging for detection of recurrent arteriovenous malformations in children. JNS Pediatr. 17(2):134–140.  https://doi.org/10.3171/2015.6.PEDS14708 Google Scholar
  39. 39.
    Jimenez JE, Gersey ZC, Wagner J, Snelling B, Ambekar S, Peterson EC (2017) Role of follow-up imaging after resection of brain arteriovenous malformations in pediatric patients: a systematic review of the literature. JNS Pediatr 19(2):149–156.  https://doi.org/10.3171/2016.9.PEDS16235 Google Scholar
  40. 40.
    Darsaut TE, Guzman R, Marcellus ML, Edwards MS, Tian L, Do HM, Chang SD, Levy RP, Adler JR, Marks MP, Steinberg GK (2011) Management of pediatric intracranial arteriovenous malformations: experience with multimodality therapy. Neurosurgery 69(3):540–556; discussion 556.  https://doi.org/10.1227/NEU.0b013e3182181c00 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical Neurosciences, Division of NeurosurgeryGeneva University HospitalsGenevaSwitzerland
  2. 2.Faculty of MedicineUniversity of GenevaGenevaSwitzerland
  3. 3.Faculty of MedicineUniversity of OsloOsloNorway
  4. 4.Department of NeurosurgeryOslo University HospitalOsloNorway

Personalised recommendations