Neurosurgical Review

, Volume 42, Issue 3, pp 663–670 | Cite as

Developmental venous anomalies and brainstem cavernous malformations: a proposed physiological mechanism for haemorrhage

  • William N MaishEmail author


The incidental diagnosis of both developmental venous anomalies (DVAs) and cavernous malformations (CMs) in the central nervous system is increasing with improved imaging techniques. While classically silent diseases, these cerebrovascular pathologies can follow an aggressive course, particularly when present in the brainstem. In the last decade, substantial research has focussed on KRIT1-mediated tight junction gene expression and their role in CM development. However, our understanding of the physiologic conditions precipitating symptomatic CM development or CM haemorrhage with and without concomitant DVAs, remains lacking. The only established risk factor for CM haemorrhage is a previous history of haemorrhage, and literature currently reports trauma as the only precipitant for symptomatic events. While plausible, this occurs in a minority, with many patients experiencing occult events. This manuscript presents a hypothesis for symptomatic CM events by first discussing the anatomical pathways for intracranial venous outflow via the internal jugular veins (IJV) and vertebral venous plexus (VVP), then exploring the role of venous flow diversion away from the IJVs under physiologic stress during dynamic postural shift. The resultant increase in intracranial venous pressure can exacerbate normal and pre-existing structural DVA pathologies, with repeated exposure causing symptomatic or CM-inducing events. This pathophysiological model is considered in the context of the role of the autonomic nervous system (ANS) in postural intracranial venous outflow diversion, and how this may increase the risk of DVA or CM events. It is hoped that this hypothesis invokes further investigation into precipitants for DVA or CM events and their sequela and, also, furthers the current knowledge on pathophysiological development of DVAs and CMs.


Brainstem Cavernous malformation Developmental venous anomaly Haemorrhage Posterior fossa drainage 


  1. 1.
    Sarwar M, McCormick WF (1978) Intracerebral venous angioma: case report and review. Arch Neurol 35(5):323–325PubMedCrossRefGoogle Scholar
  2. 2.
    Ene C, Kaul A, Kim L (2017) Natural history of cerebral cavernous malformations. Handb Clin Neurol 143:227–232. PubMedCrossRefGoogle Scholar
  3. 3.
    Gross BA, Batjer HH, Awad IA, Bendok BR (2009) Brainstem cavernous malformations. Neurosurgery 64(5):E805–EE18PubMedCrossRefGoogle Scholar
  4. 4.
    Holmlund P, Johansson E, Qvarlander S, Wåhlin A, Ambarki K, Koskinen L-OD, Malm J, Eklund A (2017) Human jugular vein collapse in the upright posture: implications for postural intracranial pressure regulation. Fluids Barriers CNS 14(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Tobinick E, Vega C (2006) The cerebrospinal venous system: anatomy, physiology, and clinical implications. MedGenMed 8(1):53PubMedGoogle Scholar
  6. 6.
    Doepp F, Schreiber SJ, von Münster T, Rademacher J, Klingebiel R, Valdueza JM (2004) How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology 46(7):565–570PubMedCrossRefGoogle Scholar
  7. 7.
    Huang YP, Wolf BS, Antin SP, Okudera T (1968) The veins of the posterior fossa—anterior or petrosal draining group. Am J Roentgenol 104(1):36–56CrossRefGoogle Scholar
  8. 8.
    Olufsen MS, Ottesen JT, Tran HT, Ellwein LM, Lipsitz LA, Novak V (2005) Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J Appl Physiol 99(4):1523–1537PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cirovic S, Walsh C, Fraser WD, Gulino A (2003) The effect of posture and positive pressure breathing on the hemodynamics of the internal jugular vein. Aviat Space Environ Med 74(2):125–131PubMedGoogle Scholar
  10. 10.
    Gisolf J, Van Lieshout J, Van Heusden K, Pott F, Stok W, Karemaker J (2004) Human cerebral venous outflow pathway depends on posture and central venous pressure. J Physiol 560(1):317–327PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Gisolf J (2005) Postural changes in humans: effects of gravity on the circulationGoogle Scholar
  12. 12.
    Sternberg Z (2012) Autonomic dysfunction: a unifying multiple sclerosis theory, linking chronic cerebrospinal venous insufficiency, vitamin D 3, and Epstein-Barr virus. Autoimmun Rev 12(2):250–259PubMedCrossRefGoogle Scholar
  13. 13.
    Clatterbuck R, Eberhart C, Crain B, Rigamonti D (2001) Ultrastructural and immunocytochemical evidence that an incompetent blood-brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 71(2):188–192PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dammann P, Wrede KH, Maderwald S, El Hindy N, Mueller O, Chen B, et al (2012) The venous angioarchitecture of sporadic cerebral cavernous malformations: a susceptibility weighted imaging study at 7 T MRI. J Neurol Neurosurg Psychiatry. jnnp-2012-302599Google Scholar
  15. 15.
    Hong YJ, Chung T-S, Suh SH, Park CH, Tomar G, Seo KD, Kim KS, Park IK (2010) The angioarchitectural factors of the cerebral developmental venous anomaly; can they be the causes of concurrent sporadic cavernous malformation? Neuroradiology 52(10):883–891PubMedCrossRefGoogle Scholar
  16. 16.
    Jakimovski D, Schneider H, Frei K, Kennes LN, Bertalanffy H (2014) Bleeding propensity of cavernous malformations: impact of tight junction alterations on the occurrence of overt hematoma. J Neurosurg 121(3):613–620PubMedCrossRefGoogle Scholar
  17. 17.
    Alonso-Vanegas MA, Cisneros-Franco JM, Otsuki T (2011) Surgical management of cavernous malformations presenting with drug-resistant epilepsy. Front Neurol 2Google Scholar
  18. 18.
    Barrow DL (2012) Cavernous malformations. World Neurosurg 78(3–4):253–254. PubMedCrossRefGoogle Scholar
  19. 19.
    Yu X-G, Wu C, Zhang H, Sun Z-H, Cui Z-Q (2016) The management of symptomatic cerebral developmental venous anomalies: a clinical experience of 43 cases. Med Sci Monit 22:4198PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Brinjikji W, El-Masri AE-R, Wald JT, Flemming KD, Lanzino G (2017) Prevalence of cerebral cavernous malformations associated with developmental venous anomalies increases with age. Childs Nerv Syst 33(9):1539–1543PubMedCrossRefGoogle Scholar
  21. 21.
    Kehrer-Sawatzki H, Wilda M, Braun VM, Richter H-P, Hameister H (2002) Mutation and expression analysis of the KRIT1 gene associated with cerebral cavernous malformations (CCM1). Acta Neuropathol 104(3):231–240PubMedGoogle Scholar
  22. 22.
    Baranoski JF, Kalani MYS, Przybylowski CJ, Zabramski JM (2016) Cerebral cavernous malformations: review of the genetic and protein–protein interactions resulting in disease pathogenesis. Front Surg3Google Scholar
  23. 23.
    Petersen TA, Morrison LA, Schrader RM, Hart BL (2010) Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. Am J Neuroradiol 31(2):377–382PubMedCrossRefGoogle Scholar
  24. 24.
    Haseloff RF, Dithmer S, Winkler L, Wolburg H, Blasig IE, (eds) (2015) Transmembrane proteins of the tight junctions at the blood–brain barrier: structural and functional aspects. Semin Cell Dev Biol. ElsevierGoogle Scholar
  25. 25.
    Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J NeuroImmune Pharmacol 1(3):223–236PubMedCrossRefGoogle Scholar
  26. 26.
    Maeder P, Gudinchet F, Meuli R, De Tribolet N. Development of a cavernous malformation of the brain. Am J Neuroradiol 19(6):1141–1143. 1998Google Scholar
  27. 27.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029–1039PubMedPubMedCentralGoogle Scholar
  28. 28.
    Pereira VM, Geibprasert S, Krings T, Aurboonyawat T, Ozanne A, Toulgoat F, Pongpech S, Lasjaunias PL (2008) Pathomechanisms of symptomatic developmental venous anomalies. Stroke 39(12):3201–3215PubMedCrossRefGoogle Scholar
  29. 29.
    Kondziolka D, Lunsford LD, Flickinger JC, Kestle JR (1995) Reduction of hemorrhage risk after stereotactic radiosurgery for cavernous malformations. J Neurosurg 83(5):825–831. PubMedCrossRefGoogle Scholar
  30. 30.
    Kashefiolasl S, Bruder M, Brawanski N, Herrmann E, Seifert V, Tritt S, Konczalla J (2018) A benchmark approach to hemorrhage risk management of cavernous malformations. Neurology 90(10):e856–ee63PubMedCrossRefGoogle Scholar
  31. 31.
    Ohue S, Fukushima T, Kumon Y, Ohnishi T, Friedman AH (2010) Surgical management of brainstem cavernomas: selection of approaches and microsurgical techniques. Neurosurg Rev 33(3):315–322; discussion 23–4. PubMedCrossRefGoogle Scholar
  32. 32.
    Houtteville JP (1997) Brain cavernoma: a dynamic lesion. Surg Neurol 48(6):610–614PubMedCrossRefGoogle Scholar
  33. 33.
    Gross BA, Lin N, Du R, Day AL (2011) The natural history of intracranial cavernous malformations. Neurosurg Focus 30(6):E24. PubMedCrossRefGoogle Scholar
  34. 34.
    Cantu C, Murillo-Bonilla L, Arauz A, Higuera J, Padilla J, Barinagarrementeria F (2005) Predictive factors for intracerebral hemorrhage in patients with cavernous angiomas. Neurol Res 27(3):314–318. PubMedCrossRefGoogle Scholar
  35. 35.
    Aguilar-Salinas P, Gonsales D, Brasiliense LB, Sauvageau E, Hanel RA (2017) High-energy trauma precipitating intramedullary cavernous malformation hemorrhage–a possible underreported mechanism. Cureus 9(3)Google Scholar
  36. 36.
    Fanous AA, Jowdy PK, Lipinski LJ, Balos LL, Li V (2016) Association between trauma and acute hemorrhage of cavernous malformations in children: report of 3 cases. J Neurosurg Pediatr 18(3):263–268PubMedCrossRefGoogle Scholar
  37. 37.
    Bravi L, Rudini N, Cuttano R, Giampietro C, Maddaluno L, Ferrarini L, Adams RH, Corada M, Boulday G, Tournier-Lasserve E, Dejana E, Lampugnani MG (2015) Sulindac metabolites decrease cerebrovascular malformations in CCM3-knockout mice. Proc Natl Acad Sci 112(27):8421–8426PubMedCrossRefGoogle Scholar
  38. 38.
    Ruiz D, Ha Y, Gailloud P (2009) Cerebral developmental venous anomalies: current concepts. Ann Neurol 66(3):271–283PubMedCrossRefGoogle Scholar
  39. 39.
    Cakirer S (2003) De novo formation of a cavernous malformation of the brain in the presence of a developmental venous anomaly. Clin Radiol 58(3):251–256PubMedCrossRefGoogle Scholar
  40. 40.
    Rammos SK, Maina R, Lanzino G (2009) Developmental venous anomalies: current concepts and implications for management. Neurosurgery 65(1):20–30PubMedCrossRefGoogle Scholar
  41. 41.
    Brinjikji W, El-Masri AE-R, Wald JT, Lanzino G (2017) Prevalence of developmental venous anomalies increases with age. Stroke 116:016145Google Scholar
  42. 42.
    Abe T, Singer RJ, Marks MP, Norbash AM, Crowley RS, Steinberg GK (1998) Coexistence of occult vascular malformations and developmental venous anomalies in the central nervous system: MR evaluation. Am J Neuroradiol 19(1):51–57PubMedGoogle Scholar
  43. 43.
    Ozturk AK, Pricola KL (2005) Cerebral venous malformations have distinct genetic origin from cerebral cavernous malformations. StrokeGoogle Scholar
  44. 44.
    Vikkula M, Boon LM, Mulliken JB (2001) Molecular genetics of vascular malformations. Matrix Biol 20(5–6):327–335PubMedCrossRefGoogle Scholar
  45. 45.
    Eerola I, Plate KH, Spiegel R, Boon LM, Mulliken JB, Vikkula M (2000) KRIT1 is mutated in hyperkeratotic cutaneous capillary–venous malformation associated with cerebral capillary malformation. Hum Mol Genet 9(9):1351–1355PubMedCrossRefGoogle Scholar
  46. 46.
    Toll A, Parera E, Giménez-Arnau AM, Pou A, Lloreta J, Limaye N et al (2009) Cutaneous venous malformations in familial cerebral cavernomatosis caused by KRIT1 gene mutations. Dermatology 218(4):307–313PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tomlinson FH, Houser OW, Scheithauer BW, Sundt Jr TM, Okazaki H, Parisi JE. Angiographically occult vascular malformations: a correlative study of features on magnetic resonance imaging and histological examination. Neurosurgery 34(5):792–800. 1994Google Scholar
  48. 48.
    Farina M, Novelli E, Pagani R (2013) Cross-sectional area variations of internal jugular veins during supine head rotation in multiple sclerosis patients with chronic cerebrospinal venous insufficiency: a prospective diagnostic controlled study with duplex ultrasound investigation. BMC Neurol 13(1):162PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lucini D, Norbiato G, Clerici M, Pagani M (2002) Hemodynamic and autonomic adjustments to real life stress conditions in humans. Hypertension 39(1):184–188PubMedCrossRefGoogle Scholar
  50. 50.
    Clutter WE, Bier DM, Shah SD, Cryer PE (1980) Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 66(1):94–101PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mills PJ, Berry CC, Dimsdale JE, Nelesen RA, Ziegler MG (1993) Temporal stability of task-induced cardiovascular, adrenergic, and psychological responses: the effects of race and hypertension. Psychophysiology 30(2):197–204PubMedCrossRefGoogle Scholar
  52. 52.
    Su I-C, Li C-H, Wang K-C, Lai D-M, Huang S-J, Shieh J-S, Tu YK (2009) Prediction of early secondary complications in patients with spontaneous subarachnoid hemorrhage based on accelerated sympathovagal ratios. Acta Neurochir 151(12):1631–1637PubMedCrossRefGoogle Scholar
  53. 53.
    Fulton GJ, Davies MG, Hagen P-O (1997) Preservation of the endothelium in venous bypass grafts: relevance for graft patency. Asia Pac Heart J 6(2):98–106CrossRefGoogle Scholar
  54. 54.
    Messerli FH (2011) Definition of hypertension. Clinician’s manual: treatment of hypertension. Springer, p. 1–2Google Scholar
  55. 55.
    Carter JB, Banister EW, Blaber AP (2003) Effect of endurance exercise on autonomic control of heart rate. Sports Med 33(1):33–46PubMedCrossRefGoogle Scholar
  56. 56.
    Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1(2):a002584PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ruíz DSM, Delavelle J, Yilmaz H, Gailloud P, Piovan E, Bertramello A et al (2007) Parenchymal abnormalities associated with developmental venous anomalies. Neuroradiology 49(12):987–995CrossRefGoogle Scholar
  58. 58.
    Marasco R, Spagnoli M, Leonardi M (2009) Association between developmental venous anomalies and cavernous angiomas: a retrospective MR study. Neuroradiol J 22(2):179–185PubMedCrossRefGoogle Scholar
  59. 59.
    Kostecki J, Zaniewski M, Ziaja K, Urbanek T, Kuczmik W, Krzystanek E, Ziaja D, Korzeniowski T, Majewski E, Hartel M, Swiat M, Sioma-Markowska U (2011) An endovascular treatment of chronic cerebro-spinal venous insufficiency in multiple sclerosis patients-6 month follow-up results. Neuro Endocrinol Lett 32(4):557–562PubMedGoogle Scholar
  60. 60.
    Zamboni P, Tesio L, Galimberti S, Massacesi L, Salvi F, D’alessandro R et al (2018) Efficacy and safety of extracranial vein angioplasty in multiple sclerosis: a randomized clinical trial. JAMA Neurol 75(1):35–43PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Australian National University Medical SchoolGarranAustralia

Personalised recommendations