Functional & Integrative Genomics

, Volume 19, Issue 6, pp 901–918 | Cite as

Genome-wide integrated analysis of miRNA and mRNA expression profiles to identify differentially expressed miR-22-5p and miR-27b-5p in response to classical swine fever vaccine virus

  • Lalrengpuii Sailo
  • Amit KumarEmail author
  • Vaishali Sah
  • Rajni Chaudhary
  • Vikramaditya Upmanyu
  • A. K. Tiwari
  • Ajay Kumar
  • Aruna Pandey
  • Shikha Saxena
  • Akansha Singh
  • Sajad Ahmad Wani
  • Ravi Kumar GandhamEmail author
  • Anil Rai
  • B. P. Mishra
  • R. K. Singh
Original Article


The present study was conducted to identify the differentially expressed miRNAs (DE miRNAs) in the peripheral blood mononuclear cells of crossbred pigs in response to CSF vaccination on 7 and 21 days of post vaccination as compared to unvaccinated control (0 dpv). Simultaneously, set of miRNA was predicted using mRNA seq data at same time point. The proportion of CD4CD8+ and CD4+CD8+ increased after vaccination, and the mean percentage inhibition was 86.89% at 21 dpv. It was observed that 22 miRNAs were commonly expressed on both the time points. Out of predicted DE miRNAs, it was found that 40 and 35 DE miRNAs were common, obtained from miRNA seq analysis and predicted using mRNA seq data on 7 dpv versus 0 dpv and 21 dpv versus 0 dpv respectively. Two DE miRNAs, ssc-miR-22-5p and ssc-miR-27b-5p, were selected based on their log2 fold change and functions of their target genes in immune process/pathway of viral infections. The validations of DE miRNAs using qRT-PCR were in concordance with miRNA seq analysis. Two set of target genes, CD40 and SWAP70 (target gene of ssc-miR-22-5p) and TLR4 and Lyn (target gene of ssc-miR-27b-5p), were validated and were in concordance with results of RNA seq analysis at a particular time point (except TLR4). The first report of genome-wide identification of differentially expressed miRNA in response to live attenuated vaccine virus of classical swine fever revealed miR-22-5p and miR-27b-5p were differentially expressed at 7 dpv and 21 dpv.


Classical swine fever RNA seq miRNA Pig 



Biological General Repository for Interaction Datasets


competitive enzyme-linked immunosorbent assay


classical swine fever


classical swine fever virus


differentially expressed genes


differentially expressed highly connected


differentially expressed microRNA


fluorescent-activated cell sorter


false discovery rate


fragments per kilobase for a million reads


Gene ontology


Kyoto Encyclopedia of Genes and Genomes


quantitative real-time polymerase chain reaction

RNA seq

RNA sequencing


RNA seq by expectation–maximization


transcript per million



Authors are thankful to the Director, ICAR-IVRI and CABin project of IASRI for providing necessary facility for executing this research project.


The CABIN project of IASRI and SubDIC (BTISnet), ICAR-IVRI provided financial assistance.

Compliance with ethical standards

Ethics approval and consent to participate

All animal experiments were conducted under an approved protocol and oversight of Institute Animal Ethics Committee of ICAR-Indian Veterinary Research Institute as per guidelines of CPCSEA, MoEF, India.

Competing financial interests

The authors declare that they have no competing interest.

Supplementary material

10142_2019_689_MOESM1_ESM.docx (358 kb)
ESM 1 (DOCX 938 kb)


  1. Aggarwal VB, George WB, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005. CrossRefGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell. 124:783–801. CrossRefPubMedGoogle Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beavitt SJ, Harder KW, Kemp JM, Jones J, Quilici C, Casagranda F, Lam E, Turner D, Brennan S, Sly PD, Tarlinton DM, Anderson GP, Hibbs ML (2005) Lyn-deficient mice develop severe, persistent asthma: Lyn is a critical negative regulator of Th2 immunity. J Immunol 175(3):1867–1875. CrossRefPubMedGoogle Scholar
  5. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski GJ (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 25:1091–1093. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, Cognat V, Marcinowski L, Dölken L, Pfeffer S (2010) Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA. 16(2):307–315. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cao Z, Guo K, Zheng M, Ning P, Li H, Kang K, Lin Z, Zhang C, Liang W, Zhang Y (2015) A comparison of the impact of Shimen and C strains of classical swine fever virus on Toll-like receptor expression. J Gen Virol 96:1732–1745. CrossRefPubMedGoogle Scholar
  8. Cao Z, Zheng M, Lv H, Guo K, Zhang Y (2017) Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus. Mol Biol Rep 17(5):7122–7130. CrossRefGoogle Scholar
  9. Chen B, Tang H, Liu X, Liu P, Yang L, Xie X, Ye F, Song C, Xie X, Wei W (2015) miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett 356:410–417. CrossRefPubMedGoogle Scholar
  10. Dong XN, Chen YH (2007) Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine. 25(2):205–230. CrossRefPubMedGoogle Scholar
  11. Feng L, Li XQ, Li XN, Li J, Meng XM, Zhang HY, Liang JJ, Li H, Sun SK, Cai XB, Su LJ, Yin S, Li YS, Luo TR (2012) In vitro infection with classical swine fever virus inhibits the transcription of immune response genes. Virol J 28(9):175. CrossRefGoogle Scholar
  12. Freitas TRP, Caldas LA, Esteves EG, Duarte ACS, Rebello MA (2009) Classical swine fever: humoral neutralizing antibody induced by a live attenuated vaccine. Rev Med Vet 6:314–318Google Scholar
  13. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415. CrossRefPubMedGoogle Scholar
  14. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52. CrossRefPubMedGoogle Scholar
  15. Graham SP, Haines FJ, Johns HL, Sosan O, La Rocca SA, Lamp B, Rumenapf T, Everett HE, Crooke HR (2012) Characterization of vaccine-induced, broadly cross-reactive IFN-gamma secreting T cell responses that correlate with rapid protection against classical swine fever virus. Vaccine. 30:2742–48.10. CrossRefPubMedGoogle Scholar
  16. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529. CrossRefGoogle Scholar
  17. Hutchens MA, Luker KE, Sonstein J, Núñez G, Curtis JL, Luker GD (2008) Protective effect of Toll-like receptor 4 in pulmonary vaccinia infection. PLoS Pathog 4(9):e1000153. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kawai T, Akira S (2010) The role of pattern-recognition recep- tors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384. CrossRefPubMedGoogle Scholar
  19. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2011) Virus taxonomy: ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press, San DiegoGoogle Scholar
  20. Lamagna C, Scapini P, van Ziffle JA, DeFranco AL, Lowell CA (2013) Hyperactivated MyD88 signaling in dendritic cells, through specific deletion of Lyn kinase, causes severe autoimmunity and inflammation. Proc Natl Acad Sci 110(35):E3311–E3320. CrossRefPubMedGoogle Scholar
  21. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25–R25.10. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 29(8):1035–1043. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426:1246–1264CrossRefPubMedGoogle Scholar
  24. Li J, Chen Z, Zhao J, Fang L, Fang R, Xiao J, Chen X, Zhou A, Yingyin Zhang Y, Ren L, Hu X, Zhao Y, Zhang S, Li N (2015) Difference in microRNA expression and editing profile of lung tissues from different pig breeds related to immune responses to HP-PRRSV. Sci Rep 5:9549. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lu X, Fu WX, Luo YR, Ding XD, Zhou JP, Liu Y, Liu JF, Zhang Q (2012) Genome-wide association study for T lymphocyte subpopulations in swine. BMC Genomics 13:488–498. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ma X, Becker Buscaglia LE, Barker JR, Li Y (2011) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3:159–166. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Maciejak A, Kiliszek M, Opolski G, Segiet A, Matlak K, Dobrzycki S, Tulacz D, Sygitowicz G, Burzynska B, Gora M (2016) miR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs. Mol Med Rep 14(3):2867–2875. CrossRefPubMedGoogle Scholar
  28. Meyers G, Thiel H (1996) Molecular characterization of pestiviruses. Adv Virus Res 47:53–118. CrossRefPubMedGoogle Scholar
  29. Moresco EM, LaVine D, Beutler B (2011) Toll-like receptors. Curr Biol 21:R488–R493. CrossRefPubMedGoogle Scholar
  30. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams.
  31. Pandey A, Sahu AR, Wani SA, Saxena S, Kanchan S, Sah V, Rajak KK, Khanduri A, Sahoo AP, Tiwari AK, Mishra B, Muthuchelvan D, Mishra BP, Singh RK, Gandham RK (2017) Modulation of host miRNAs transcriptome in lung and spleen of Peste des Petits ruminants virus infected sheep and goats. Front Microbiol 8:1146–1158. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pathak SK, Kumar A, Bhuwana G, Sah V, Upmanyu V, Tiwari AK, Sahoo AP, Sahoo AR, Wani SA, Panigrahi M, Sahoo NR, Kumar R (2017) RNA Seq analysis for transcriptome profiling in response to classical swine fever vaccination in indigenous and crossbred pigs. Funct Integr Genomics 17:607–620. CrossRefPubMedGoogle Scholar
  33. Quemeneur L, Angeli V, Chopin M, Jessberger R (2008) SWAP-70 deficiency causes high-affinity plasma cell generation despite impaired germinal center formation. Blood. 111(5):2714–2724. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Reimand J, Arak T, Vilo J (2011) G: profiler—a web server for functional interpretation of gene lists. Nucleic Acids Res 39:307–315. CrossRefGoogle Scholar
  35. Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. CrossRefPubMedGoogle Scholar
  36. Saito M, Gao J, Basso K, Kitagawa Y, Smith PM, Bhagat G, Pernis A, Pasqualucci L, Dalla-Favera R (2007) A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 12:280–292. CrossRefPubMedGoogle Scholar
  37. Sarma DK, Krishna L, Mishri J (2008) Classical swine fever in pigs and its status in India: a review. Indian J Anim Sci 78(12):1311–1317Google Scholar
  38. Scheel TK, Luna JM, Liniger M, Nishiuchi E, Rozen-Gagnon K, Shlomai A, Auray G, Gerber M, Fak J, Keller I, Bruggmann R, Darnell RB, Ruggli N, Rice CM (2016) A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host Microbe 19(3):409–423. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Prot 3(6):1101–1108. CrossRefGoogle Scholar
  40. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Singaravelu R, Chen R, Lyn RK, Jones DM, O'Hara S, Rouleau Y, Cheng J, Srinivasan P, Nasheri N, Russell RS, Tyrrell DL, Pezacki JP (2014) Hepatitis C virus induced up-regulation of microRNA-27: a novel mechanism for hepatic steatosis. Hepatol. 59(1):98–108. CrossRefGoogle Scholar
  42. Singh A, Kumar A, Sahoo NR, Upmanyu V, Kumar B, Bhushan B, Sharma D (2016) Association of humoral response to classical swine fever vaccination with single nucleotide polymorphisms of swine leukocyte antigens. J Appl Anim Res 32:187–190. CrossRefGoogle Scholar
  43. Suh HS, Zhao ML, Choi N, Belbin TJ, Brosnan CF, Lee SC (2009) TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virol. 392:246–259. CrossRefGoogle Scholar
  44. Summerfield A, Ruggli N (2015) Immune responses against classical swine fever virus: between ignorance and lunacy. Front Vet Sci 2:10–20. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Suradhat S, Sada W, Buranapraditkun S, Damrongwatanapokin S (2005) The kinetics of cytokine production and CD25 expression by porcine lymphocyte subpopulations following exposure to classical swine fever virus (CSFV). Vet Immunol Immunopathol 106:197–208. CrossRefPubMedGoogle Scholar
  46. Suthram S, Shlomi T, Ruppin E, Sharan R, Ideker T (2006) A direct comparison of protein interaction confidence assignment schemes. BMC Bioinformatics 7:360. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vela EM, Kasoji MD, Wendling MQ, Price JA, Knostman KAB, Bresler HS, Long JP (2014) MicroRNA expression in mice infected with seasonal H1N1, swine H1N1 or highly pathogenic H5N1. J Med Microbiol 63:1131–1142. CrossRefPubMedGoogle Scholar
  48. Xiao S, Du T, Wang X, Ni H, Yan Y, Li N, Zhang C, Zhang A, Gao J, Liu H, Pu F, Zhang G, Zhou E (2016) MiR-22 promotes porcine reproductive and respiratory syndrome virus replication by targeting the host factor HO-1. Vet Microbiol 192:226–230. CrossRefPubMedGoogle Scholar
  49. Yang M, Li Y, Padgett RW (2005) MicroRNAs: small regulators with a big impact. Cytokine Growth Factor Rev 16:387–393. CrossRefPubMedGoogle Scholar
  50. Zhang H, Wang YH, Cao HW, Cui YD (2010) Phylogenetic analysis of E2 genes of classical swine fever virus in China. Isr J Vet Med 65:151–155Google Scholar
  51. Zhang KS, Liu YJ, Kong HJ, Cheng WW, Shang YJ, Tian H, Zheng HX, Guo JH, Liu XT (2014) Identification and analysis of differential miRNAs in PK-15 cells after foot-and-mouth disease virus infection. PLoS One 9(3):e90865. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang X, Li Y, Wang D, Wei X (2017) miR-22 suppresses tumorigenesis and improves radio sensitivity of breast cancer cells by targeting Sirt1. Biol Res 50:27. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lalrengpuii Sailo
    • 1
  • Amit Kumar
    • 1
    Email author
  • Vaishali Sah
    • 1
  • Rajni Chaudhary
    • 1
  • Vikramaditya Upmanyu
    • 2
  • A. K. Tiwari
    • 2
  • Ajay Kumar
    • 3
  • Aruna Pandey
    • 3
  • Shikha Saxena
    • 3
  • Akansha Singh
    • 4
  • Sajad Ahmad Wani
    • 5
  • Ravi Kumar Gandham
    • 6
    Email author
  • Anil Rai
    • 7
  • B. P. Mishra
    • 8
  • R. K. Singh
    • 3
  1. 1.Animal GeneticsIndian Veterinary Research InstituteBareillyIndia
  2. 2.Standardization DivisionIndian Veterinary Research InstituteBareillyIndia
  3. 3.Animal BiochemistryIndian Veterinary Research InstituteBareillyIndia
  4. 4.Animal Genetics and BreedingIndian Veterinary Research InstituteBareillyIndia
  5. 5.Ohio State UniversityColumbusUSA
  6. 6.Animal BiotechnologyNational Institute of Animal BiotechnologyHyderabadIndia
  7. 7.Head Centre for BioinformaticsIASRINew DelhiIndia
  8. 8.BiotechnologyIndian Veterinary Research InstituteBareillyIndia

Personalised recommendations