Advertisement

Functional & Integrative Genomics

, Volume 19, Issue 4, pp 633–643 | Cite as

Bone marrow mesenchymal stem cell–derived exosomes alleviate high phosphorus-induced vascular smooth muscle cells calcification by modifying microRNA profiles

  • Yan Guo
  • Shumin Bao
  • Wang Guo
  • Zongli Diao
  • Liyan Wang
  • Xue Han
  • Weikang GuoEmail author
  • Wenhu LiuEmail author
Original Article
  • 245 Downloads

Abstract

Vascular calcification is a common complication in patients with chronic kidney disease (CKD). It is an important predictor of cardiovascular disease and all-cause mortality. Previous studies have confirmed that bone marrow mesenchymal stem cell (BMSC) therapy can reduce vascular calcification, but the specific mechanism is still controversial. In this study, we aimed to investigate the mechanisms of BMSC-derived exosomes (EXO) in improving vascular calcification. BMSCs were cultured and EXO were isolated using the Total Exosome Isolation Reagent. Human aortic vascular smooth muscle cells (HA-VSMCs) were cultured into three groups: control group, high phosphorus group, and high phosphorus plus EXO group. Then, indicators related to smooth muscle cell calcification and microRNA profiles were analyzed. BMSC-derived exosomes inhibited high phosphorus-induced calcification in HA-VSMCs. Besides, EXO treatment reduced calcium content and decreased the alkaline phosphatase (AKP) activity in high phosphorus co-incubated HA-VSMCs. MicroRNA (miRNA) and mRNA expression profiles analyses revealed that 63 miRNAs were significantly upregulated and 1424 genes were significantly downregulated in HA-VSMCs after EXO treatment. Functional miRNA-gene regulatory network revealed that mTOR, MAPK, and Wnt signaling pathway were involved in vascular calcification. BMSC-derived exosomes alleviated high phosphorus-induced calcification in HA-VSMC through modifying miRNA profiles.

Keywords

Chronic kidney disease Vascular calcification Exosomes Bone mesenchymal stem cells MicroRNA 

Notes

Acknowledgments

We also thank Clare Cox, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript. We would especially like to thank Dr. Wei Chen (Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University) for helpful suggestions and revisions.

Funding information

The authors wish to thank the Beijing Talents Fund (No. 2016000021469G223), the National Natural Science Foundation of China (No. 81570660), and the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (No. ZYLX201824) for financial support.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10142_2019_669_MOESM1_ESM.xls (19 kb)
Table S1 (XLS 19 kb)
10142_2019_669_MOESM2_ESM.xls (24 kb)
Table S2 (XLS 24 kb)
10142_2019_669_MOESM3_ESM.xlsx (13 kb)
Table S3 (XLSX 13 kb)
10142_2019_669_MOESM4_ESM.xlsx (122 kb)
Table S4 (XLSX 121 kb)
10142_2019_669_MOESM5_ESM.xlsx (1.9 mb)
Table S5 (XLSX 1983 kb)
10142_2019_669_MOESM6_ESM.xlsx (181 kb)
Table S6 (XLSX 180 kb)
10142_2019_669_MOESM7_ESM.xlsx (17 kb)
Table S7 (XLSX 17 kb)
10142_2019_669_MOESM8_ESM.xlsx (11 kb)
Table S8 (XLSX 10 kb)
10142_2019_669_MOESM9_ESM.xlsx (14 kb)
Table S9 (XLSX 13 kb)

References

  1. Albanese I, Khan K, Barratt B, Al-Kindi H, Schwertani A (2018) Atherosclerotic calcification: Wnt is the hint. J Am Heart Assoc 7(4).  https://doi.org/10.1161/JAHA.117.007356
  2. Badi I, Mancinelli L, Polizzotto A, Ferri D, Zeni F, Burba I, Milano G, Brambilla F, Saccu C, Bianchi ME, Pompilio G, Capogrossi MC, Raucci A (2018) miR-34a promotes vascular smooth muscle cell calcification by downregulating SIRT1 (Sirtuin 1) and AXL (AXL receptor tyrosine kinase). Arterioscler Thromb Vasc Biol 38(9):2079–2090CrossRefGoogle Scholar
  3. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell. 136(2):215–233CrossRefGoogle Scholar
  4. Batista BS, Eng WS, Pilobello KT, Hendricks-Muñoz KD, Mahal LK (2011) Identification of a conserved glycan signature for microvesicles. J Proteome Res 10(10):4624–4633CrossRefGoogle Scholar
  5. Chaikriangkrai K, Jhun HY, Palamaner Subash Shantha G, Bin Abdulhak A, Sigurdsson G, Nabi F, Mahmarian JJ, Chang SM (2017) Coronary artery calcium score as a predictor for incident stroke: systematic review and meta-analysis. Int J Cardiol 236:473–477CrossRefGoogle Scholar
  6. Chao CT, Liu YP, Su SF, Yeh HY, Chen HY, Lee PJ, Chen WJ, Lee YM, Huang JW, Chiang CK, Hung KY, Chen HW (2017) Circulating MicroRNA-125b predicts the presence and progression of uremic vascular calcification. Arterioscler Thromb Vasc Biol 37(7):1402–1414CrossRefGoogle Scholar
  7. Crompot E, Van Damme M, Pieters K, Vermeersch M, Perez-Morga D, Mineur P, Maerevoet M, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B (2017) Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica 102(9):1594–1604CrossRefGoogle Scholar
  8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy 8(4):315–317CrossRefGoogle Scholar
  9. Fang T, Wu Q, Zhou L, Mu S, Fu Q (2016) miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp Cell Res 347(1):74–82CrossRefGoogle Scholar
  10. Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685CrossRefGoogle Scholar
  11. Frith JE, Kusuma GD, Carthew J, Li F, Cloonan N, Gomez GA, Cooper-White JJ (2018) Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling. Nat Commun 9(1):257CrossRefGoogle Scholar
  12. Fujii H, Kono K, Nakai K, Goto S, Nishii T, Kono A, Nishi S (2018) Effects of lanthanum carbonate on coronary artery calcification and cardiac abnormalities after initiating hemodialysis. Calcif Tissue Int 102(3):310–320CrossRefGoogle Scholar
  13. Godfrey TC, Wildman BJ, Beloti MM, Kemper AG, Ferraz EP, Roy B, Rehan M, Afreen LH, Kim E, Lengner CJ, Hassan Q (2018) The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem 293(45):17646–17660CrossRefGoogle Scholar
  14. Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P (2017) Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol 13(7):429–442CrossRefGoogle Scholar
  15. Izadpanahi M, Seyedjafari E, Arefian E, Hamta A, Hosseinzadeh S, Kehtari M, Soleimani M (2018) Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway. Mater Sci Eng C Mater Biol Appl 93:686–703CrossRefGoogle Scholar
  16. Kang H, Hata A (2015) The role of microRNAs in cell fate determination of mesenchymal stem cells: balancing adipogenesis and osteogenesis. BMB Rep 48(6):319–323CrossRefGoogle Scholar
  17. Kim D, Sung YM, Park J, Kim S, Kim J, Park J, Ha H, Bae JY, Kim SH, Baek D (2016) General rules for functional microRNA targeting. Nat Genet 48(12):1517–1526CrossRefGoogle Scholar
  18. Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, el Oakley RM, Pasterkamp G, de Kleijn DPV, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222CrossRefGoogle Scholar
  19. Lazar E, Benedek T, Korodi S, Rat N, Lo J, Benedek I (2018) Stem cell-derived exosomes - an emerging tool for myocardial regeneration. World J Stem Cells 10(8):106–115CrossRefGoogle Scholar
  20. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120(1):15–20CrossRefGoogle Scholar
  21. Li W, Liu Y, Zhang P, Tang Y, Zhou M, Jiang W, Zhang X, Wu G, Zhou Y (2018) Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl Mater Interfaces 10(6):5240–5254CrossRefGoogle Scholar
  22. Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX (2017) Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem 43(1):52–68CrossRefGoogle Scholar
  23. Liu J, Zhu W, Jiang CM, Feng Y, Xia YY, Zhang QY, Zhang M (2019) Activation of the mTORC1 pathway by inflammation contributes to vascular calcification in patients with end–stage renal disease. J Nephrol 32(1):101–110CrossRefGoogle Scholar
  24. Luther KM, Haar L, McGuinness M, Wang Y, Lynch IV TL, Phan A, Song Y, Shen Z, Gardner G, Kuffel G, Ren X, Zilliox MJ, Jones WK (2018) Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol 119:125–137CrossRefGoogle Scholar
  25. Ma T, Chen Y, Chen Y, Meng Q, Sun J, Shao L, Yu Y, Huang H, Hu Y, Yang Z, Yang J, Shen Z (2018) MicroRNA–132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int 2018:3290372Google Scholar
  26. Mackenzie NC, Staines KA, Zhu D, Genever P, Macrae VE (2014) miRNA-221 and miRNA-222 synergistically function to promote vascular calcification. Cell Biochem Funct 32(2):209–216CrossRefGoogle Scholar
  27. Müller P, Lemcke H, David R (2018) Stem cell therapy in heart diseases - cell types, mechanisms and improvement strategies. Cell Physiol Biochem 48(6):2607–2655CrossRefGoogle Scholar
  28. Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191CrossRefGoogle Scholar
  29. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173CrossRefGoogle Scholar
  30. Reid IR, Gamble GD, Bolland MJ (2016) Circulating calcium concentrations, vascular disease and mortality: a systematic review. J Intern Med 279(6):524–540CrossRefGoogle Scholar
  31. Reiss AB, Miyawaki N, Moon J, Kasselman LJ, Voloshyna I, D'Avino R Jr, de Leon J (2018) CKD, arterial calcification, atherosclerosis and bone health: inter-relationships and controversies. Atherosclerosis. 278:49–59CrossRefGoogle Scholar
  32. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefGoogle Scholar
  33. Silva WA Jr, Covas DT, Panepucci RA, Proto–Siqueira R, Siufi JL, Zanette DL, Santos AR, Zago MA (2003) The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21(6):661–669Google Scholar
  34. Speer MY, Yang HY, Brabb T, Leaf E, Look A, Lin WL, Frutkin A, Dichek D, Giachelli CM (2009) Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res 104(6):733–741CrossRefGoogle Scholar
  35. Sudo R, Sato F, Azechi T, Wachi H (2015) MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells. Genes Cells 20(12):1077–1087CrossRefGoogle Scholar
  36. Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, el Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DP (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137CrossRefGoogle Scholar
  37. Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, Yang Z, Chen Y, Li J, Ma T, Liu H, Li Z, Yang J, Shen Z (2018) Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc 7(15):e008737Google Scholar
  38. Xiao C, Wang K, Xu Y, Hu H, Zhang N, Wang Y, Zhong Z, Zhao J, Li Q, Zhu D, Ke C, Zhong S, Wu X, Yu H, Zhu W, Chen J, Zhang J, Wang J’, Hu X (2018) Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circ Res 123(5):564–578CrossRefGoogle Scholar
  39. Yang Y, Sun Y, Chen J, Bradley WE, Dell’Italia LJ, Wu H, Chen Y (2018) AKT-independent activation of p38 MAP kinase promotes vascular calcification. Redox Biol 16:97–103CrossRefGoogle Scholar
  40. Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, Lim SK (2013) Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev 65(3):336–341CrossRefGoogle Scholar
  41. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287CrossRefGoogle Scholar
  42. Zhang H, Xiang M, Meng D, Sun N, Chen S (2016) Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells. Stem Cells Int 2016:4328362Google Scholar
  43. Zhang H, Chen J, Shen Z, Gu Y, Xu L, Hu J, Zhang X, Ding X (2018) Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling. Toxicol Lett 284:29–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney DiseasesCapital Medical UniversityBeijingChina

Personalised recommendations