Advertisement

Functional & Integrative Genomics

, Volume 19, Issue 4, pp 617–632 | Cite as

Genome organisation and comparative genomics of four novel Wolbachia genome assemblies from Indian Drosophila host

  • Kopal Singhal
  • Sujata MohantyEmail author
Original Article

Abstract

Wolbachia has long been known to share an endosymbiotic relationship with its host as an obligate intracellular organism. Wolbachia diversity as different supergroups is found to be host-specific in most cases except a few, where the host species is seen to accommodate multiple strains. Besides, the Wolbachia genome must have undergone several changes in response to the evolving host genome in order to adapt and establish a strong association with its host, thus making a distinctive Wolbachia–host alliance. The present study focusses on four novel genome assembly and genome-wide sequence variations of Indian Wolbachia strains, i.e. wMel and wRi isolated from two different Drosophila hosts. The genome assembly has an average size of ~ 1.1 Mb and contains ~ 1100 genes, which is comparable with the previously sequenced Wolbachia genomes. The comparative genomics analysis of these genomes and sequence-wide comparison of some functionally significant genes, i.e. ankyrin repeats, Wsp and T4SS, highlight their sequence similarities and dissimilarities, further supporting the strain-specific association of Wolbachia to its host. Interestingly, some of the sequence variations are also found to be restricted to only Indian Wolbachia strains. Further analysis of prophage and their flanking regions in the Wolbachia genome reveals the presence of several functional genes which may assist the phage to reside inside the bacterial host, thus providing a trade-off for the endosymbiont–host association. Understanding this endosymbiont genome in different eco-geographical conditions has become imperative for the recent use of Wolbachia in medical entomology as a vector–control agent.

Keywords

Wolbachia Drosophila Endosymbiont–host association India Genome assembly Comparative genomics 

Abbreviations

wMel_KL

wMel isolated from Kerala

wMel_AMD

wMel isolated from Ahmedabad

wRi_KL

wRi isolated from Kerala

wRi_AMD

wRi isolated from Ahmedabad

wMel_Ref

wMel reference genome from NCBI

wRi_Ref

wRi reference genome from NCBI

MLST

Multi locus sequence typing

T4SS

Type IV secretion system

Wsp

Wolbachia surface protein

WGS

Whole genome sequencing

NGS

Next-generation sequencing

Notes

Acknowledgements

The authors thank the Eurofins Genomics India Pvt. Ltd. for providing WGS service. SM thanks the DST for bearing the sequencing expense. KS thanks CSIR for providing JRF-Fellowship. The authors also thank the Vice Chancellor, JIIT for providing infrastructure facilities for conducting this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any human or animal studies.

Supplementary material

10142_2019_664_MOESM1_ESM.docx (419 kb)
ESM 1 (DOCX 419 kb)

References

  1. Alfoldi J, Lindblad-Toh K (2013) Comparative genomics as a tool to understand evolution and disease. Genome Res 23(7):1063–1068.  https://doi.org/10.1101/gr.157503.113 Google Scholar
  2. Al-Khodor S, Price CT, Kalia A, Kwaik YA (2010) Ankyrin-repeat containing proteins of microbes: a conserved structure with functional diversity. Trends Microbiol 18(3):132–139.  https://doi.org/10.1016/j.tim.2009.11.004 Google Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 Google Scholar
  4. Amrutha KM, Pattabhiramaiah M, Anusha PK (2015) Bio-computational characterization of Wolbachia surface protein in different species of Drosophila. IJERGS 3(6):382–396Google Scholar
  5. Ankola K, Brueckner D, Puttaraju HP (2011) Wolbachia endosymbiont infection in two Indian butterflies and female-biased sex ratio in the Red Pierrot, Talicadanyseus. J Biosci 36(5):845–850.  https://doi.org/10.1007/s12038-011-9149-34 Google Scholar
  6. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Meyer F (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9(1):75.  https://doi.org/10.1186/1471-2164-9-75 Google Scholar
  7. Baldo L, Lo N, Werren JH (2005) Mosaic nature of the Wolbachia surface protein. J Bacteriol 187(15):5406–5418.  https://doi.org/10.1128/JB.187.15 Google Scholar
  8. Baron C (2005) From bioremediation to biowarfare: on the impact and mechanism of type IV secretion systems. FEMS Microbiol Lett 253(2):163–170.  https://doi.org/10.1016/j.femsle.2005.09.030 Google Scholar
  9. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acid Res 33(suppl_2):W451–W454Google Scholar
  10. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics:btu170Google Scholar
  11. Bordenstein SR, Bordenstein SR (2016) Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun 7.  https://doi.org/10.1038/ncomms13155
  12. Bordenstein SR, Wernegreen JJ (2004) Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 21(10):1981–1991Google Scholar
  13. Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2(5):e43.  https://doi.org/10.1371/journal.ppat.0020043 Google Scholar
  14. Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacterial 180(9):2373–2378Google Scholar
  15. Christen M, Beusch C, Bösch Y, Cerletti D, Flores-Tinoco CE, Del Medico L, Christen B (2016) Quantitative selection analysis of bacteriophage φcbk susceptibility in Caulobacter crescentus. J Mol Biol 428(2):419–430.  https://doi.org/10.1016/j.jmb.2015.11.018 Google Scholar
  16. Christensen S, Serbus LR (2015) Comparative analysis of Wolbachia genomes reveals streamlining and divergence of minimalist two-component systems. G35(5):983–996.  https://doi.org/10.1534/g3.115.017137
  17. Comandatore F, Cordaux R, Bandi C, Blaxter M, Darby A, Makepeace BL, Sassera D (2015) Supergroup C Wolbachia, mutualist symbionts of filarial nematodes, have a distinct genome structure. Open Biol 5(12):150099.  https://doi.org/10.1098/rsob.150099 Google Scholar
  18. Das B, Satapathy T, Kar SK, Hazra RK (2014) Genetic structure and Wolbachia genotyping in naturally occurring populations of Aedes albopictus across contiguous landscapes of Orissa, India. PloS One 9(4):e94094.  https://doi.org/10.1371/journal.pone.0094094 Google Scholar
  19. Duron O, Boureux A, Echaubard P, Berthomieu A, Berticat C, Fort P, Weill M (2007) Variability and expression of ankyrin domain genes in Wolbachia variants infecting the mosquito Culex pipiens. J Bacterial 189(12):4442–4448.  https://doi.org/10.1128/JB.00142-07 Google Scholar
  20. Eckert B, Martin A, Balbach J, Schmid FX (2005) Prolyl isomerization as a molecular timer in phage infection. Nat Struct Mol Biol 12(7):619–623.  https://doi.org/10.1038/nsmb946 Google Scholar
  21. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 Google Scholar
  22. Ellegaard KM, Klasson L, Naslund K, Bourtzis K, Andersson SG (2013) Comparative genomics of Wolbachia and the bacterial species concept. PLoS Genet 9(4):e1003381.  https://doi.org/10.1371/journal.pgen.1003381 Google Scholar
  23. Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M (2006) Phylogenetic relationships of the Wolbachia of nematodes and arthropods. PLoS Pathog 2(10):e94.  https://doi.org/10.1371/journal.ppat.0020094 Google Scholar
  24. Fernandez-Garcia L, Blasco L, Lopez M, Bou G, Garcia-Contreras R, Wood T, Tomas M (2016) Toxin-antitoxin systems in clinical pathogens. Toxins 8(7):227Google Scholar
  25. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Vincze T (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4):e121.  https://doi.org/10.1371/journal.pbio.0030121 Google Scholar
  26. Gavotte L, Henri H, Stouthamer R, Charif D, Charlat S, Bouletreau M, Vavre F (2007) A survey of the bacteriophage WO in the endosymbiotic bacteria Wolbachia. Mol Biol Evol 24(2):427–435.  https://doi.org/10.1093/molbev/msl171 Google Scholar
  27. Giordano R, O’Neill SL, Robertson HM (1995) Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and Drosophila mauritiana. Genetics 140(4):1307–1317Google Scholar
  28. Guruprasad NM, Jalali SK, Puttaraju HP (2013) Wolbachia infection frequency and phylogenetic affiliation of Wolbachia cell division protein gene (ftsZ) in uzi fly Exorista sorbillans (Diptera: Tachinidae) of Karnataka (India). J Entomol Zool Stud 1:129–133Google Scholar
  29. Hertig M, Wolbach SB (1924) Studies on rickettsia-like micro-organisms in insects. J Med Res 44(3):329–374.7Google Scholar
  30. Hiroki M, Tagami Y, Miura K, Kato Y (2004) Multiple infection with Wolbachia inducing different reproductive manipulations in the butterfly Eurema hecabe. Proc R Soc Lond 271:1751–1755.  https://doi.org/10.1098/rspb.2004.2769 Google Scholar
  31. Hoffmann AA, Ross PA, Rasic G (2015) Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8(8):751–768.  https://doi.org/10.1111/eva.12286 Google Scholar
  32. Holden PR, Brookfield JF, Jones P (1993) Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet 240(2):213–220.  https://doi.org/10.1007/BF00277059 Google Scholar
  33. Ishmael N, Hotopp JCD, Ioannidis P, Biber S, Sakamoto J, Siozios S, Tettelin H (2009) Extensive genomic diversity of closely related Wolbachia strains. Microbiology 155(7):2211–2222.  https://doi.org/10.1099/mic.0.027581-0 Google Scholar
  34. Iturbe-Ormaetxe I, Burke GR, Riegler M, O’Neill SL (2005) Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacterial 187(15):5136–5145.  https://doi.org/10.1128/JB.187.15 Google Scholar
  35. Jernigan KK, Bordenstein SR (2014) Ankyrin domains across the tree of life. Peer J 2:e264.  https://doi.org/10.7717/peerj.264 Google Scholar
  36. Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbial 18(4):173–181.  https://doi.org/10.1016/j.tim.2009.12.011 Google Scholar
  37. Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sinkins SP (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 25(9):1877–1887.  https://doi.org/10.1093/molbev/msn133 Google Scholar
  38. Klasson L, Westberg J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC, Bourtzis K (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci 106(14):5725–5730.  https://doi.org/10.1073/pnas.0810753106 Google Scholar
  39. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol:msw054.  https://doi.org/10.1093/molbev/msw054
  40. Leplae R, Geeraerts D, Hallez R, Guglielmini J, Dreze P, Van Melderen L (2011) Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513–5525Google Scholar
  41. Li J, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45(51):15168–15178.  https://doi.org/10.1021/bi062188q Google Scholar
  42. Lindsey AR, Werren JH, Richards S, Stouthamer R (2016) Comparative genomics of a parthenogenesis-inducing Wolbachia symbiont. G3 (Bethesda) 6(7):2113–2123.  https://doi.org/10.1534/g3.116.028449 Google Scholar
  43. Ma Z, Geng J, Yi L, Xu B, Jia R, Li Y, Hu S (2013) Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246. BMC Genomics 14(1):377.  https://doi.org/10.1186/1471-2164-14-377 Google Scholar
  44. Mann S, Chen YPP (2010) Bacterial genomic G+ C composition-eliciting environmental adaptation. Genomics 95(1):7–15Google Scholar
  45. Masui S, Kamoda S, Sasaki T, Ishikawa H (2000) Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51(5):491–497.  https://doi.org/10.1007/s002390010112 Google Scholar
  46. Mavingui P, Moro CV, Tran-Van V, Wisniewski-Dye F, Raquin V, Minard G, Lozano L (2012) Whole-genome sequence of Wolbachia strain wAlbB, an endosymbiont of tiger mosquito vector Aedes albopictus. J Bacteriol 194(7):1840–1840.  https://doi.org/10.1128/JB.00036-12 Google Scholar
  47. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Hugo LE (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell 139(7):1268–1278.  https://doi.org/10.1016/j.cell.2009.11.042 Google Scholar
  48. Nagradova N (2010) Peptidyl-prolyl cis/trans isomerase activity in the functioning of native folded proteins. Mol Biol 1(11):WMC00965.  https://doi.org/10.9754/journal.wmc.2010.00965 Google Scholar
  49. Narita S, Nomura M, Kageyama D (2007) Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microbiol Ecol 61(2):235–245.  https://doi.org/10.1111/j.1574-6941.2007.00333.x Google Scholar
  50. O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci 89(7):2699–2702Google Scholar
  51. Okonechnikov K, Golosova O, Fursov M (2012) UniproUGENE: a unified bioinformatics toolkit. Bioinformatics 28(8):1166–1167.  https://doi.org/10.1093/bioinformatics/bts091 Google Scholar
  52. Pichon S, Bouchon D, Cordaux R, Chen L, Garrett RA, Greve P (2009) Conservation of the type IV secretion system throughout Wolbachia evolution. Biochem Biophys Res Commun 385(4):557–562Google Scholar
  53. Poinsot D, Bourtzis K, Markakis G, Savakis C, Merçot H (1998) Wolbachia transfer from Drosophila melanogaster into Drosophila simulans: host effect and cytoplasmic incompatibility relationships. Genetics 150(1):227–237Google Scholar
  54. Ramirez-Puebla ST, Ormeno-Orrillo E, de Leon AVP, Lozano L, Sanchez-Flores A, Rosenblueth M, Martínez-Romero E (2016) Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the cochineal insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3 (Bethesda) 6(10):3343–3349.  https://doi.org/10.1534/g3.116.031237/-/DC1 Google Scholar
  55. Rances E, Voronin D, Tran-Van V, Mavingui P (2008) Genetic and functional characterization of the type IV secretion system in Wolbachia. J Bacterial 190(14):5020–5030.  https://doi.org/10.1128/JB.00377-08 Google Scholar
  56. Ravikumar H, Ramachandraswamy N, Sampathumar S, Prakash BM, Huchesh HC, Uday J, Puttaraju HP (2010) A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae). Trop Biomed 27(3):384–393Google Scholar
  57. Ravikumar H, Prakash BM, Sampathkumar S, Puttaraju HP (2012) Molecular subgrouping of Wolbachia and bacteriophage WO infection among some Indian Drosophila species. J Genet 90(3):507Google Scholar
  58. Ros VI, Fleming VM, Feil EJ, Breeuwer JA (2009) How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). AEM 75(4):1036–1043Google Scholar
  59. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425.  https://doi.org/10.1093/oxfordjournals.molbev.a040454 Google Scholar
  60. Salunkhe RC, Dhotre DP, Salunke BK, Patil VS, Mahale V, Andrew RJ , Shouche YS (2015) Distribution and molecular characterization of Wolbachia endosymbionts in odonata (insecta) from Central India by multigene approach. Curr Sci (00113891)108(5)Google Scholar
  61. Salzberg SL, Hotopp JCD, Delcher AL, Pop M, Smith DR, Eisen MB, Nelson WC (2005) Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6(3):R23Google Scholar
  62. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci 95(11):5857–5864Google Scholar
  63. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16.  https://doi.org/10.1038/NMETH1156 Google Scholar
  64. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42:683–707.  https://doi.org/10.1146/annurev.genet.41.110306.130354 Google Scholar
  65. Sheehan KB, Martin M, Lesser CF, Isberg RR, Newton IL (2016) Identification and characterization of a candidate Wolbachia pipientis type IV effector that interacts with the actin cytoskeleton. MBio 7(4):e00622–e00616.  https://doi.org/10.1128/mBio.00622-16 Google Scholar
  66. Siddiqui SS, Raja IA (2015) Molecular detection of endosymbiont bacteria Wolbachia in bed bug species Cimex lectularius from Vidarbha region of India. IJLSCI 3:200–204Google Scholar
  67. Singhal K, Mohanty S (2018) Comparative genomics reveals the presence of putative toxin–antitoxin system in Wolbachia genomes. Mol Genet Genomics 293(2):525–540Google Scholar
  68. Singhal K, Khanna R, Mohanty S (2017) Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species. World J Microbiol Biotechnol 33(6):103Google Scholar
  69. Siozios S, Ioannidis P, Klasson L, Andersson SG, Braig HR, Bourtzis K (2013) The diversity and evolution of Wolbachia ankyrin repeat domain genes. PLoS One 8(2):e55390.  https://doi.org/10.1371/journal.pone.0055390 Google Scholar
  70. Stevens L, Giordano R, Fialho RF (2001) Male-killing, nematode infections, bacteriophage infection, and virulence of cytoplasmic bacteria in the genus Wolbachia. Annu Rev Ecol Syst 32(1):519–545.  https://doi.org/10.1146/annurev.ecolsys.32.081501.114132 Google Scholar
  71. Sutton ER, Harris SR, Parkhill J, Sinkins SP (2014) Comparative genome analysis of Wolbachia strain wAu. BMC Genomics 15(1):928.  https://doi.org/10.1186/1471-2164-15-928 Google Scholar
  72. Uday J, Puttaraju HP (2012) Comparative analysis of Wolbachia surface protein in D. melanoagster, A. tabida and B. malayi. Bioinformation 8(15):711–715Google Scholar
  73. Uday J, Kumar S, Puttaraju HP (2015) Detection and phylogenetic affiliation of Wolbachia endosymbiont from Drosophila melanogaster (India). Entomol News 124(4):270–276.  https://doi.org/10.3157/021.124.0404 Google Scholar
  74. Valette V, Essono PYB, Le Clech, Johnson M, Bech N, Grandjean F (2013) Multi-infections of feminizing Wolbachia strains in natural populations of the terrestrial isopod Armadillidium vulgare. PLoS One 8(12):e82633.  https://doi.org/10.1371/journal.pone.0082633 Google Scholar
  75. Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426.  https://doi.org/10.1016/j.tig.2014.07.001 Google Scholar
  76. Van Domselaar GH, Stothard P, Shrivastava S, Cruz JA, Guo A, Dong X, Wishart DS (2005) BASys: a web server for automated bacterial genome annotation. Nucleic Acids Res 33(suppl 2):W455–W459.  https://doi.org/10.1093/nar/gki593 Google Scholar
  77. Walker T, Klasson L, Sebaihia M, Sanders MJ, Thomson NR, Parkhill J, Sinkins SP (2007) Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol 5(1):39.  https://doi.org/10.1186/1741-7007-5-39 Google Scholar
  78. Webb MR, Plank JL, Long DT, Hsieh TS, Kreuzer KN (2007) The phage T4 protein UvsW drives Holliday junction branch migration. J Biol Chem 282(47):34401–34411.  https://doi.org/10.1074/jbc.M705913200 Google Scholar
  79. Wei L, Liu Y, Dubchak I, Shon J, Park J (2002) Comparative genomics approaches to study organism similarities and differences. J Biomed Inform 35(2):142–150.  https://doi.org/10.1016/S1532-0464(02)00506-3 Google Scholar
  80. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42(1):587–609Google Scholar
  81. Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M, Seleznev A, Sullivan MJ (2013) Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol 5(11):2189–2204.  https://doi.org/10.1093/gbe/evt169 Google Scholar
  82. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, Wiegand C (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2(3):e69.  https://doi.org/10.1371/journal.pbio.0020069 Google Scholar
  83. Zechner EL, Lang S, Schildbach JF (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc B 367(1592):1073–1087.  https://doi.org/10.1098/rstb.2011.0207 Google Scholar
  84. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829.  https://doi.org/10.1101/gr.074492.107 Google Scholar
  85. Zhou W, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R SocL ond B [Biol] 265(1395):509–515.  https://doi.org/10.1098/rspb.1998.0324 Google Scholar
  86. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39(suppl_2):W347–W352.  https://doi.org/10.1093/nar/gkr485 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations