Skip to main content

Advertisement

Log in

Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Brinjal or eggplant (Solanum melongena L.) is an important solanaceous edible crop, and salt stress adversely affects its growth, development, and overall productivity. To cope with excess salinity, vacuolar Na+/H+ antiporters provide the best mechanism for ionic homeostasis in plants under salt stress. We generated transgenic eggplants by introducing wheat TaNHX2 gene that encodes a vacuolar Na+/H+ antiporter in to the eggplant genome via Agrobacterium-mediated transformation using pBin438 vector that harbors double35S:TaNHX2 to confer salinity tolerance. Polymerase chain reaction and southern hybridization confirmed the presence and integration of TaNHX2 gene in T1 transgenic plants. Southern positive transgenic eggplants showed varied levels of TaNHX2 transcripts as evident by RT-PCR and qRT-PCR. Stress-inducible expression of TaNHX2 significantly improved growth performance and Na+ and K+ contents from leaf and roots tissues of T2 transgenic eggplants under salt stress, compared to non-transformed plants. Furthermore, T2 transgenic eggplants displayed the stable leaf relative water content and chlorophyll content, proline accumulation, improved photosynthetic efficiency, transpiration rate, and stomatal conductivity than the non-transformed plants under salinity stress (200 mM NaCl). Data showed that the T2 transgenic lines revealed that reduction in MDA content, hydrogen peroxide, and oxygen radical production associated with the significant increase of antioxidant enzyme activity in transgenic eggplants than non-transformed plants under salt stress (200 mM NaCl). This study suggested that the TaNHX2 gene plays an important regulatory role in conferring salinity tolerance of transgenic eggplant and thus may serve as a useful candidate gene for improving salinity tolerance in other vegetable crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

RT-PCR:

Reverse transcription PCR

qRT-PCR:

Quantitative real-time PCR

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

MDA:

Malondialdehyde

References

  • Abbas W, Ashraf M, Akram NA (2010) Alleviation of salt-induced adverse effects in eggplant (Solanum melongena L.) by glycinebetaine and sugarbeet extracts. Sci Hortic 125:188–195

    Article  CAS  Google Scholar 

  • Akinci IE, Akinci S, Yilmaz K, Dikici H (2004) Response of eggplant varieties (Solanum melongena) to salinity in germination and seedling stages. New Zealand J Crop and Hort Sci 32:193–200

    Article  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJM (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt tolerance in crop plants. Genet Mol Biol 40:326–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savoure A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120:442–450

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA, Al-Qurainy F, Foolad MR (2011) Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. Adv Agron 111:24996

    Google Scholar 

  • AVRDC (2006) Proceedings of the 2006 APSA-AVRDC workshop. AVRDC-The world vegetable center, Shanhua, Tainan, Taiwan. AVRDC Publication, p 06–677

  • Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol 22:1–6

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62:5561–5570

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Biochem 43:347–354

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and Hþ-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  CAS  PubMed  Google Scholar 

  • Bulle M, Yarra R, Abbagani S (2016) Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed 36:36. https://doi.org/10.1007/s11032-016-0451-5

    Article  CAS  Google Scholar 

  • Cao D, Hou W, Liu W, Yao WW, Wu C, Liu X, Han T (2011) Overexpression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tissue Organ Cult 107:541–552

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30(7):987–998

    CAS  Google Scholar 

  • Chen H, An R, Tang JH, Cui XH, Hao FS, Chen J, Wang XC (2007) Over-expression of a vacuolar Na+/H+antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225

    Article  CAS  Google Scholar 

  • Dadkhah AR, Grrifiths H (2006) The effect of salinity on growth, inorganic ions and dry matter partitioning in sugar beet cultivars. J Agric Sci Technol 8:199–210

    Google Scholar 

  • Daunay M (2008) Eggplant. In: Vegetables II, Prohens J, Nuez F (eds) Handbook of plant breeding. Springer, New York, pp 163–220

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1:19–21

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the solanaceae. Genetics 161:1697–1711

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Deng G, Wang H, Zhang H, Zhang P (2015) Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas). Physiol Plant 154:560–571

    Article  CAS  PubMed  Google Scholar 

  • FAO (2002) Working with local institutions to support sustainable livelihoods. Food and Agriculture Organization, Rome

    Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155

    Article  CAS  PubMed  Google Scholar 

  • Gantasala NP, Papolu PK, Thakur PK, Kamaraju D, Sreevathsa R, Rao U (2013) Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L). BMC Res Notes 6:312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Rao R, Sherman A, Grisafi F, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNHX1 and AVP1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A 96:1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98:11444–11449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79(1):137–155

    Article  CAS  PubMed  Google Scholar 

  • Haripriya D, Selvan N, Jeyakumar N, Periasamy R, Marimuthu J, Irudayaraj V (2010) The effect of extracts of Selaginella involvens and Selaginella inaequalifolia leaves on poultry pathogens. Asian Pac J Trop Med 3:67881

    Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ et al (2009) Antioxidant defense response: physiological plasticity in higher plants under abiotic constrains. Acta Physiol Plant 31:427–436

    Article  CAS  Google Scholar 

  • Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 55:792–795

    Article  Google Scholar 

  • Koike M, Sugimoto M, Aiuchi D, Nagao H, Shinya R, Tani M, Kuramochi K (2007) Reclassification of Japanese isolate of Verticillium lecanii to Lecanicillium spp. Jpn J Appl Entomol Zool 51:234–237

    Article  Google Scholar 

  • Kumar SK, Sivanesan I, Murugesan K, Jeong BR, Hwang SJ et al (2014) Enhancing salt tolerance in eggplant by introduction of foreign halotolerance gene, HAL1isolated from yeast. Hortic Environ Biotechnol 55:222–229. https://doi.org/10.1007/s13580-014-0141-3

    Article  CAS  Google Scholar 

  • Kumar S, Kalita A, Srivastava R, Sahoo L (2017) Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci 8:1896

    Article  PubMed  PubMed Central  Google Scholar 

  • Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernandez JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495–450

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jiang G, Huang P, Ma J, Zhang F (2007) Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult 90:41–48

    Article  CAS  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Mol Biol Report 29:278–290

    Article  CAS  Google Scholar 

  • Li N, Wang X, Ma B, Du C, Zheng L, Wang Y (2017) Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. J Plant Physiol 218:109–120

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhu JK (1997) Proline accumulation and salt–stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114:591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Guo C, Li X, Duan W, Ma C, Zhao M, Gu J, Du X, Liu Z, Xiao K (2014) Overexpression of TaNHX3, a vacuolar Na+/H+ antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes. Plant Physiol Biochem 76:17–28

    Article  CAS  PubMed  Google Scholar 

  • McCubbin T, Bassil E, Zhang S, Blumwald E (2014) Vacuolar Na+/H+ NHX-type antiporters are required for cellular K+ homeostasis, microtubule organization and directional root growth. Plants 3:409–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mozafariyan M, Bayat KSAE, Bakhtiari S (2013) The effects of different sodium chloride concentrations on the growth and photosynthesis parameters of tomato (Lycopersicum esculentum cv. Foria). Int J Agri Crop Sci 6(4):203–207

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    Article  CAS  Google Scholar 

  • Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Mol Breed 9:137–147

    Article  CAS  Google Scholar 

  • Prasad SM, Parihar P, Singh VP (2014) Effect of salt stress on nutritional value of vegetables. Biochem Pharmacol 3:e160. https://doi.org/10.4172/2167-0501.1000e160

    Article  CAS  Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol 57:308–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo DB, Kumar S, Mishra S, Kobayashi Y, Panda SK, Sahoo L (2016) Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Mol Breed 36:144. https://doi.org/10.1007/s11032-016-0564-x

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Al-Qurainy F, Harris PJC (2012) Salt tolerance in selected vegetable crops. Crit Rev Plant Sci 31(4):303–320. https://doi.org/10.1080/07352689.2012.656496

    Article  CAS  Google Scholar 

  • Shaheen S, Naseer S, Ashraf M, Akram NA (2013) Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. J Plant Interact 8:85–96

    Article  CAS  Google Scholar 

  • Shalhevet J, Heuer B, Meiri A (1983) Irrigation interval as a factor in the salt tolerance of eggplant. Irrig Sci 4:83–93

    Article  Google Scholar 

  • Shi H, Lee BH, Wu SJ et al (2002) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  • Sixto H, Aranda I, Grau JM (2006) Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence. Photosynthetica 44:169–173

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,50-dithiobis (2-nitrobenzoic acid). Anal Biochem 175:408–413

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Li C, Xu K, Du Y, Xia T (2010) Isolation, functional characterization, and expression pattern of a vacuolar Na(+)/H(+) antiporter gene TrNHX1 from Trifolium repens L. Plant Mol Biol Report 28:102–111

    Article  CAS  Google Scholar 

  • Unlukara A, Kurunc A, Kesmez GD, Yurtseven E, Suarez DL (2010) Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Irrig Drain 59:203–214

    Google Scholar 

  • Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, Zhu JH, Agarwal M, Katiyar-Agarwal S, Zhu JK (2007) Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signalling in Arabidopsis thaliana. Mol Cell Biol 27:7771–7780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Hua H, EgrinyaEneji A, Li Z, Duan L, Tian X (2012) Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum L.). J. Photochem Photobiol 110:1–8

    Article  CAS  Google Scholar 

  • Wang B, Zhai H, He S, Zhang H, Ren Z, Zhang D, Liu Q (2016) A vacuolar Na+/H+, antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic 201:153–166

    Article  CAS  Google Scholar 

  • Wei Q, Guo YJ, Cao HM, Kuai BK (2011) Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 105:309–316

    Article  CAS  Google Scholar 

  • Wu M, Chen W, Zhao Y, Feng SG, Ying QC, Liu JJ, Wang HZ (2012) Salt tolerance enhancement of transgenic rice with Na+/H+ antiporter gene driven by root specific promoter PmPgPR10. Chin J. Rice Sci 26:643–650

    CAS  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The Cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Apse MP, Aharon GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol Plant 116:206–212

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yamaguchi T, Hamamoto S, Uozumi N (2013) Sodium transport system in plant cells. Front Plant Sci 4:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 111(1):49–57

    Article  CAS  Google Scholar 

  • Yu JN, Huang J, Wang ZN, Zhang JS, Chen SY (2007) An Na+/H+ antiporter gene from wheat plays an important role in stress tolerance. J Biosci 32:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Li Q, Wang H, Zhang J, Du J, Feng H, Blumwald E, Yu L, Xu G (2017) Two NHX-type transporters from Helianthus tuberosus improve the tolerance of rice to salinity and nutrient deficiency stress. Plant Biotechnol J 16:310–321. https://doi.org/10.1111/pbi.12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YM, Zhang HM, Liu ZH, Li HC, Guo XL, Li GL (2015) The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. Plant Mol Biol 87:317–327

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Zhang J, Hou XL, Wang F, Xiong AS (2014) Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Crit Rev Plant Sci 33(2–3):225–237

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Head, Department of Plant Sciences for access to the research facilities provided by DST-FIST, DBT-CREBB, and UGC-SAP to the Department of Plant Sciences, University of Hyderabad. The authors are thankful to Prof. Shouyi Chen and Prof. Jinsong Zhang, Institute of Genetics and Developmental Biology, CAS, Beijing for generous offer of the plasmid used in this study. We thank the anonymous reviewers for their valuable comments in improving the manuscript.

Funding

The Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India provided fund and fellowship under Young Scientist Scheme (SB/FT/LS-445/2012).

Author information

Authors and Affiliations

Authors

Contributions

RY and PBK conceived the experiment. RY performed the experiment. RY and PBK analyzed the data. RY and PBK wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Rajesh Yarra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarra, R., Kirti, P.B. Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genomics 19, 541–554 (2019). https://doi.org/10.1007/s10142-019-00656-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-019-00656-5

Keywords

Navigation